Discrete Optimization 2024 (EPFL): Problem set of week 1

March 14, 2024

1. Let $v_{1}, \ldots, v_{n+1} \in \mathbb{R}^{n}$ be such that the angles between every two are equal. Find this angle if it is known that it is different from 0 .
Solution: We may assume that the length of each v_{i} is equal to 1 . Let A be the $(n+1) \times n$ matrix whose rows are v_{1}, \ldots, v_{n+1}. Then $A A^{t}$ is an $(n+1) \times(n+1)$ matrix whose entries are all equal to some c except the main diagonal where it is all 1's. This matrix can be written as $(1-c) I_{n+1}+c J_{n+1}$, where J_{n+1} is the matrix all of whose entries are equal to 1 . Notice that J_{n+1} is a matrix of rank 1 with one eigen value that is equal to $n+1$ and all the rest are 0 's. Then the eigen values of $A A^{t}$ are all equal to $1-c$ except for one that is equal to $1-c+c(n+1)$. Because $A A^{t}$ cannot be of rank $n+1$ (why?), then it must have an eigen value that is equal to 0 . So either $c=1$ which corresponds to all v_{i} 's being equal, or $c=\frac{-1}{n}$. Then the angle between any two vectors is $\arccos \frac{1}{n}$. (Check for example in the plane, where $n=2$.)
2. Let Δ be a triangle in \mathbb{R}^{n} such that all the coordinates of its vertices are integers. Show that the area of Δ is at least $\frac{1}{2}$.
Solution: We recall that the area of a triangle determined by two vectors is $\frac{1}{2}$ the area of the parallelogram determined by these vectors. This area is a square root of an expression that is an integer if all the coordinates are integers. Therefore, the area of such a triangle is at least $\frac{1}{2}$ times the square root of an integer (which is at least 1).
3. Find all the vectors in \mathbb{R}^{3} that are perpendicular to $(1,1,1)$ and create an angle of 60 degrees with $(1,2,3)$
Solution: Denoting such a vector by (x, y, z) we need $x+y+z=0$ and $\frac{x+2 y+3 z}{\sqrt{14} \sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{2}$. Because we care only about the direction of the
vectors we may assume $z=1$ (and check the case $z=0$ separately). Then we get a quadratic equation in one variable (after setting $y=$ $-1-x)$. We should get two solutions unless we are unlucky.
4. $(1,2,3),(2,-4,5)$, and $(-2,0,9)$ are three vertices of a parallelogram in \mathbb{R}^{3}. What are the possibilities for the forth vertex?
Solution: Denoting the three points by A, B, C the center of the parallelogram is in one of the midpoints $(A+B) / 2,(B+C) / 2$, or $(A+C) / 2$. Then for example if the center is $(A+B) / 2$, then the fourth vertex is the reflection of C through $(A+B) / 2$, This is $C+2((A+B) / 2-C)=$ $A+B-C$. The two other options are $A+C-B$ and $B+C-A$.
5. Show that it is impossible to find $n+1$ nonzero vectors \mathbb{R}^{n} every two of which are perpendicular.

Solution: Not unlikely that you have seen it before in Linear algebra. There is more than one way to do this. Assume to the contrary that there are such vectors v_{1}, \ldots, v_{n+1}. Then let A be the $(n+1) \times n$ matrix whose rows are v_{1}, \ldots, v_{n+1}. Then $A A^{t}$ is a diagonal $(n+1) \times$ $(n+1)$ matrix with non-zeroes on the main diagonal. This is impossible because the rank of A is at most n. We have seen a similar trick already in Problem 1.

