Linear Programming 2024 (EPFL): Problem set of week 10

May 3, 2024

1. We are given m subsets S_{1}, \ldots, S_{m} of $\{1, \ldots, n\}$.
a) Find an integer linear program that computes the maximum number of pairwise disjoint sets among $S_{1}, \ldots, S m$.
b) Find an integer linear program that computes the minimum cardinality of a subset B of $\{1, \ldots, n\}$ such that $B \cap S_{i}$ is not empty for every i.
2. Let A be a matrix where column of A contains only 0 's except for one coordinate that is equal to 1 and another coordinate that is equal to -1 . Show that A is totally unimodular.
3. Give an example for a linear program with no maximum (in other words, unbounded linear program) such that the corresponding integer program is not unbounded.
4. Let A be a matrix where every row looks like $(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$, or $(1, \ldots, 1,0, \ldots, 0)$, or $(0, \ldots, 0,1, \ldots, 1)$, or $(1, \ldots, 1)$. That is, all the 1's appear in one interval. Show that every $k \times k$ submatrix of A has determinant 0,1 , or -1 (in other words, A is totally unimodular).

5 . Let K be the cone generated by n linearly independent vectors in \mathbb{R}^{n}. Show that C must contain infinitely many integer points.

