Discrete Optimization 2024 (EPFL): Problem set of week 9

April 30, 2024

Reminder: Farkas' Lemma (version I): $A x=b$ with $x \geq 0$ has a solution iff for every $q \in \mathbb{R}^{m}$ such that $q A \geq 0$ we have also $\langle q, b\rangle \geq 0$.

Farkas' Lemma (version II): $A x \leq b$ has a solution iff $q \geq 0$ and $q A=0$, implies $\langle q, b\rangle \geq 0$.

1. Find a hyperplane separating the point $x=(1,3,9)$ from the cone in \mathbb{R}^{3} generated by the three vectors $v_{1}=(1,1,1), v_{2}=(1,2,3)$, and $v_{3}=(1,2,1)$.
Solution: The cone has three facets (faces of maximal dimension). These three faces are contained in the three hyperplanes spanned by the three possible pairs of vectors from v_{1}, v_{2}, and v_{3}. At least one of these hyperplanes is good for us or otherwise x would belong to the cone. Now it is not difficult to find one that works.
2. Let K be a cone in \mathbb{R}^{n}. Prove that any hyper-plane H supporting K must pass through the origin O.
Solution: Let $H=\{\langle q, x\rangle=r\}$ be a supporting hyper-plane for the cone K. We need to show $r=0$. Let $v \in H \cap K$. We may assume that $\langle q, x\rangle \geq r$ for every $x \in K$ (otherwise replace r with $-q$ and replace r with $-r$). Because $v \in K$ and k is a cone, then also $\frac{1}{2} v, 2 v \in K$. We have $\left\langle q, \frac{1}{2} v\right\rangle=\frac{1}{2} r$. and $\langle q, 2 v\rangle=2 r$. Hence it must be that $\frac{1}{2} r, 2 r \geq r$. This implies $r=0$.
3. Prove that $A \vec{x}=\vec{b}$ has a solution (we do not require $x \geq 0$ as in Farkas' Lemma) if and only if for every y such that $y A=0$ we also have $\langle y, b\rangle=0$.

Solution: $A x=b$ has a solution if and only if $A x-A y=b$ has a solution with $x, y \geq 0$. By Farkas' lemma applied for the system $A^{\prime}(x, y)=b$ for $A^{\prime}=(A,-A)$, this system has a solution if and only if for every q such that $q A^{\prime} \geq 0$ we have $\langle q, b\rangle \geq 0$. Now $q A^{\prime} \geq 0$ is equivalent to $q A \geq 0$ and $q(-A) \geq 0$. Hence $q A=0$.
Therefore, the original system has a solution if and only if $q A=0$ implies $\langle q, b\rangle \geq 0$.
But this is if and only if $q A=0$ implies $\langle q, b\rangle=0$ (because if $q A=0$, then also $-q A=0$ and so this should imply $\langle q, b\rangle \geq 0$ and $\langle-q, b\rangle \geq 0$. This is the same as $\langle q, b\rangle=0$).
4. Prove the following Farkas-like Lemma: $A x<0, \quad x \geq 0$ has a solution if and only if there is no $y \geq 0, \quad y \neq 0$ such that $y A \geq 0$.
Solution: $A x<0, x \geq 0$ has a solution if and only if $A x+z=$ $(-\epsilon, \ldots,-\epsilon), x \geq 0, z \geq 0$ has a solution for some $\epsilon>0$.
We apply Farkas' lemma. The matrix of the new system is

$$
A^{\prime}=\left(A, I_{m}\right)
$$

The new system has a solution if and only if $q A^{\prime} \geq 0$ implies also $\langle q,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$.
Now, $q A^{\prime} \geq 0$ is equivalent to $q A \geq 0$ and $q \geq 0$. In such a case in order for q to satisfy $\langle q,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$ (for some $\epsilon>0$) we must have $q=0$. Therefore,
having $q A^{\prime} \geq 0$ implying $\langle q,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$ is the same as $q A^{\prime} \geq 0$ implying $q=0$. This is the same as $q A \geq 0$ and $q \geq 0$ implies $q=0$.
This is the same as if there is no $q \geq 0, \quad q \neq 0$ such that $q A \geq 0$. May be a bit confusing to follow but this is exactly what we had to prove.
5. Prove the following Farkas-like Lemma: $A x=0, x>0$ has a solution if and only if there is no y such that $y A \geq 0$ and $y A \neq 0$.
Solution: $A x=0, x>0$ has a solution if and only if
$A x=0,-x+z=(-\epsilon, \ldots,-\epsilon), x, z \geq 0$ has a solution for some $\epsilon>0$.
This is the same as $A^{\prime}(x, z)=(0,0 \ldots, 0,-\epsilon, \ldots,-\epsilon)$ has a solution for the matrix

$$
A^{\prime}=\left(\begin{array}{cc}
A & 0_{m, n} \\
-I_{n} & I_{n}
\end{array}\right)
$$

By apply Farkas' lemma, this is equivalent to:
$(q, p) A^{\prime} \geq 0$ implies $\langle(q, p),(0, \ldots, 0,-\epsilon, \ldots,-\epsilon)\rangle \geq 0$
This is the same as $q A-p \geq 0, \quad p \geq 0$ implies $\langle p,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$.
This is the same as $q A-p \geq 0, \quad p \geq 0$ implies $p=0$ (because it is not possible that $p \geq 0$ and $\langle p,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$, unless $p=0)$.
This is the same as $q A \geq 0$ implies $q A=0$ (because if not, then we could take, for example, $p=\frac{1}{2} q A$ and then $q A-p \geq 0$ but $p=\frac{1}{2} q A \neq$ $0)$. This is exactly what we want.

