Discrete Optimization 2024 (EPFL): Problem set of week 7

April 17, 2024

Reminder: The dual of the linear program $\max \{\langle c, x\rangle \mid A x \leq b\}$ is the linear program $\min \{\langle y, b\rangle \mid y A=c, \quad y \geq 0\}$

1. Consider the linear program $\max \{\langle x, \vec{c}\rangle \mid A x \leq b\}$ and assume that it attains a maximum at a single point x at which precisely n constraints meet. Prove that the dual linear problem has a unique minimum.

Solution: We know from the simplex algorithm that there are $\lambda_{1}, \ldots, \lambda_{n}>$ 0 such that $\sum \lambda_{i} a_{i}=c$ for some n rows of A that we assume without loss of generality are a_{1}, \ldots, a_{n}. Notice that a_{1}, \ldots, a_{n} are linearly independent because x is a vertex.
Consider now the vector $y=\left(\lambda_{1}, \ldots, \lambda_{n}, 0, \ldots, 0\right)$.
Then $y A=c$ and $\langle y, b\rangle$ is the minimum of the dual problem. If there is another such point y^{\prime}, then y^{\prime} should be positive in coordinates that are equal to 0 in y, for otherwise there is another linear combination of a_{1}, \ldots, a_{n} that is equal to c. This is impossible because a_{1}, \ldots, a_{n} are linearly independent.
Now $\langle c, x\rangle=y^{\prime} A x \leq y^{\prime} b$. On the other hand we assume that $y^{\prime} b$ is also the minimum value of the dual program. Therefore, it must be that x satisfies equality in $A x \leq b$ for every coordinate at which y^{\prime} is positive. In particular x has to satisfy equality in another row that is not one of a_{1}, \ldots, a_{n}. This is a contradiction to our assumption that only n constraints meet at x.
2. What is the dual linear program to $\max \{\langle x, c\rangle \mid A x=b\}$?

Solution: We can write this linear program as

$$
\begin{equation*}
\binom{A}{-A} x \leq\binom{ b}{-b} \tag{1}
\end{equation*}
$$

The dual problem is:
$\min \{\langle u-v, b\rangle \mid(u-v) A=c, u, v \geq 0\}$.
This is equivalent to $\min \{\langle y, b\rangle \mid y A=c\}$, without any condition on y being ≥ 0.
3. Let $A=I_{n}$ be the identity matrix.
a) What are all the vectors c for which $\langle x, c\rangle$ has a maximum in the set $A x \leq 0$?
b) what is the dual linear program?

Solution:
a) All the vectors c with $c \geq 0$.
b) formally it is $\min \{0 \mid y=c, y \geq 0\}$. We see that if $c \geq 0$, then there is a solution and the minimum is 0 . If it is not true that $c \geq 0$, then there is no feasible point. This corresponds to having no maximum for the primal problem.
4. Let a_{1}, \ldots, a_{n+1} be $n+1$ vectors in \mathbb{R}^{n} such that every n of them are linearly independent.
Show that if $\sum_{i=1}^{n+1} a_{i}=0$, then for every vector c one can find nonnegative real numbers y_{1}, \ldots, y_{n+1} such that $c=\sum_{i=1}^{n+1} y_{i} a_{i}$.
Solution: (through duality of linear programming. There are other solutions. Could be even simpler) Let A be the matrix whose rows are a_{1}, \ldots, a_{n+1}. Notice that $A x \leq 0$ has only the solution $x=0$. This is because for any other x satisfying $A x \leq 0$ it must be that $A x$ has some negative coordinates (why?). But this is impossible because $\overrightarrow{\mathbf{1}} A=0$ and on the other hand $\overrightarrow{\mathbf{1}} A x=\langle\overrightarrow{\mathbf{1}},(A x)\rangle$ must be negative.
Now for every c the dual problem of $\max \{\langle x, c\rangle \mid A x \leq 0\}$ (for which there is a maximum and it is equal to 0$)$ is $\min \{0 \mid y A=c, y \geq 0\}$. It must be that the feasible set is not empty in order for the minimum to be 0 and not ∞. This means that we have such $y=\left(y_{1}, \ldots, y_{n+1}\right)$ as we want.
5. What is the dual problem to the following maximization problem:

What is the maximum of $x_{1}+2 x_{2}+3 x_{3}+\ldots+n x_{n}$ subject to the conditions that $x_{i}+x_{i} \leq 1$ for every $i \neq j$?
Solution: The dual problem is to find the minimum of $\sum_{1 \leq i \neq j \leq n} y_{\{i, j\}}$ where for every j we have $\sum_{i \neq j} y_{\{i, j\}}=j$ and $y_{\{i, j\}} \geq 0$ for every $i \neq j$.

