Discrete Optimization 2024 (EPFL): Problem set of week 7

April 12, 2024

Reminder: The dual of the linear program $\max \{\langle c, x\rangle \mid A x \leq b\}$ is the linear program $\min \{\langle y, b\rangle \mid y A=c, \quad y \geq 0\}$

1. Consider the linear program $\max \{\langle x, \vec{c}\rangle \mid A x \leq b\}$ and assume that it attains a maximum at a single point x at which precisely n constraints meet. Prove that the dual linear problem has a unique minimum.
2. What is the dual linear program to $\max \{\langle x, c\rangle \mid A x=b\}$?
3. Let $A=I_{n}$ be the identity matrix.
a) What are all the vectors c for which $\langle x, c\rangle$ has a maximum in the set $A x \leq 0$?
b) what is the dual linear program?
4. Let a_{1}, \ldots, a_{n+1} be $n+1$ vectors in \mathbb{R}^{n} such that every n of them are linearly independent.
Show that if $\sum_{i=1}^{n+1} a_{i}=0$, then for every vector c one can find nonnegative real numbers y_{1}, \ldots, y_{n+1} such that $c=\sum_{i=1}^{n+1} y_{i} a_{i}$.
5. What is the dual problem to the following maximization problem:

What is the maximum of $x_{1}+2 x_{2}+3 x_{3}+\ldots+n x_{n}$ subject to the conditions that $x_{i}+x_{i} \leq 1$ for every $i \neq j$?

