Discrete Optimization 2024 (EPFL): Problem set of week 7

April 12, 2024

Reminder: The dual of the linear program $\max\{\langle c, x \rangle \mid Ax \leq b\}$ is the linear program $\min\{\langle y, b \rangle \mid yA = c, y \geq 0\}$

- 1. Consider the linear program $\max\{\langle x, \overrightarrow{c} \rangle \mid Ax \leq b\}$ and assume that it attains a maximum at a single point x at which precisely n constraints meet. Prove that the dual linear problem has a unique minimum.
- 2. What is the dual linear program to $\max\{\langle x, c \rangle \mid Ax = b\}$?
- 3. Let $A = I_n$ be the identity matrix.
 - a) What are all the vectors c for which $\langle x, c \rangle$ has a maximum in the set $Ax \leq 0$?
 - b) what is the dual linear program?
- 4. Let a_1, \ldots, a_{n+1} be n+1 vectors in \mathbb{R}^n such that every n of them are linearly independent.

Show that if $\sum_{i=1}^{n+1} a_i = 0$, then for every vector c one can find nonnegative real numbers y_1, \ldots, y_{n+1} such that $c = \sum_{i=1}^{n+1} y_i a_i$.

5. What is the dual problem to the following maximization problem:

What is the maximum of $x_1 + 2x_2 + 3x_3 + \ldots + nx_n$ subject to the conditions that $x_i + x_i \leq 1$ for every $i \neq j$?