
Discrete Optimization 2024 (EPFL):
Problem set of week 6

April 9, 2024

Reminder: The dual of the linear program max{⟨c, x⟩ | Ax ≤ b} is the
linear program min{⟨y, b⟩ | yA = c, y ≥ 0}

1. Consider the following (very easy) maximizaton problem max{x1+. . .+
xn | x1, . . . , xn ≤ 1}. What is the dual minimization problem?

Solution: Our maximization problem is a linear program with c =
(1, 1, . . . , 1), A = In, and b = (1, 1, . . . , 1).

Therefore, the dual problem is to find the minimum of y1 + . . . + yn
subject to y1 = y2 = . . . = yn = 1. As you can see, this is even easier
than the original (very easy) maximization problem.

2. Consider the following (not very difficult) maximization problem: Find
max

∑n
i=1 xi subject to xi + xj ≤ 1 for every i ̸= j.

What is the dual minimization problem? Try to formulate it in a
natural way for a graph on n vertices since there are only n variables
in dimension n.

Solution: The linear program here is max{⟨c, x⟩ | Ax ≤ b}, where A
is the

(
n
2

)
×n matrix with all the m =

(
n
2

)
possible rows having two 1’s

and the rest 0’s. b = (1, 1, . . . , 1)T ∈ R(
n
2) and c = (1, 1, . . . , 1)T ∈ Rn.

The dual problem is min{⟨y, b⟩ | yTA = cT , y ≥ 0}.
In terms of graphs, let G be the complete graph on n vertices. It has
m =

(
n
2

)
edges. The dual problem is to find the optimal way to give

nonnegative weights to the edges of the graph such that on one hand
the sum of the weights of the edges going from any fixed vertex is equal
to 1 and on the other hand we want the sum of the weights of all edges
to be minimum.
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Notice that for the dual problem all feasible points give the optimal
value. This is not the case for the primal problem.

3. Let A be an m × n matrix with rows a1, . . . , am and let b ∈ Rm be

given. Consider the polyhedron P defined by A−→x ≤
−→
b .

Assume that I = {1, 2, . . . , n} is a basis, but not a feasible basis.
Denote by Q the point that is the intersection of the n hyperplanes
{⟨ai, x⟩ = bi} for i = 1, . . . , n.

Prove that for every λ1, . . . , λn > 0 there is α such that the hyperplane
H = {⟨

∑n
i=1 λiai, x⟩ = α} separates Q and P .

Solution: Because a1, . . . , an are linearly independent, Q is the only
point that satisfies {⟨ai, x⟩ = bi} for i = 1, . . . , n. Therefore, for every
point of x ∈ P we have ⟨

∑n
i=1 λiai, x⟩ <

∑n
i=1 λibi.

Let y ∈ P be the point of maximum of ⟨
∑n

i=1 λiai, x⟩ over all x in
P . We have ⟨

∑n
i=1 λiai, y⟩ <

∑n
i=1 λibi. Taking α to be any number

between
∑n

i=1 bi and ⟨
∑n

i=1 λiai, y⟩ will yield a separating hyperplane.

4. Let F be a family of m subsets of {1, . . . , n}. We wish to find x1, . . . , xn

such that
∑

xi is minimum and
∑

i∈S xi ≥ 1 for every S ∈ F . Verify
that this problem can be written as a linear program. What is the dual
(and therefore equivalent) minimization problem?

Solution: We can write our problem as:

−max{
n∑

i=1

(−xi) | Ax ≤ b},

where b = (−1,−1, . . . ,−1)T ∈ Rm and A is the matrix that has m
rows that represent the sets in F . For every S ∈ F we have a row
with −1 at those coordinates i ∈ S and 0 otherwise. Notice that∑n

i=1(−xi) = ⟨c, x⟩, where c = (−1,−1, . . . ,−1)T ∈ Rn. Therefore,
our linear problem is −max{⟨c, x⟩ | Ax ≤ b}. For convenience denote
the sets in F by S1, . . . , Sm.

The dual problems is −min{⟨b, y⟩ | yTA = cT , y ≥ 0}. We are
looking for −min

∑
−yi where yTA = (−1, . . . ,−1). This is the same

as finding the maximum of
∑

yi subject to yi ≥ 0 for every i and∑
j∈Si

yi = 1 for every j.
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5. Consider a general linear program of the form max{⟨x, c⟩ | Ax ≤ b}.
Assume that the vector c does not belong to the span of the rows of
the matrix A (in particular A does not have a full rank n). Prove
that either there is no maximum for the linear program, or there is no
feasible point x satisfying Ax ≤ b.

Solution: There must be a vector v that is perpendicular to every row
of A but not perpendicular to c. There is more than one way to see this.
For example, consider the subspace of all vectors perpendicular the the
span of the rows of A. Is they are all perpendicular to c it means that c
is perpendicular to n linearly independent vectors (a basis of the span
of the rows of A and a basis of the subspace perpendicular to the rows
of A. But then c must b the 0 vector and then it belongs to the span
of the rows of A.

Take such a vector v that is perpendicular to every row of the matrix
A but not perpendicular to c. Take any feasible point x (unless there
is no feasible point). Then tv + x is feasible for every t (why?). We
can take t to be arbitrarily positive or arbitrarily negative and then
⟨c, x+ tv⟩ = ⟨c, x⟩+ t⟨c, v⟩ can be arbitrarily large or arbitrarily small.
Hence there is no maximum and no minimum.
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