Discrete Optimization 2024 (EPFL): Problem set of week 6

April 4, 2024

Reminder: The dual of the linear program $\max \{\langle c, x\rangle \mid A x \leq b\}$ is the linear program $\min \{\langle y, b\rangle \mid y A=c, \quad y \geq 0\}$

1. Consider the following (very easy) maximizaton problem $\max \left\{x_{1}+\ldots+\right.$ $\left.x_{n} \mid x_{1}, \ldots, x_{n} \leq 1\right\}$. What is the dual minimization problem?
2. Consider the following (not very difficult) maximization problem: Find $\max \sum_{i=1}^{n} x_{i}$ subject to $x_{i}+x_{j} \leq 1$ for every $i \neq j$.
What is the dual minimization problem? Try to formulate it in a natural way for a graph on n vertices.
3. Let A be an $m \times n$ matrix with rows a_{1}, \ldots, a_{m} and let $b \in \mathbb{R}^{m}$ be given. Consider the polyhedron P defined by $A \vec{x} \leq \vec{b}$.
Assume that $I=\{1,2, \ldots, n\}$ is a basis, but not a feasible basis. Denote by Q the point of intersection of the n hyper-planes $\left\{\left\langle a_{i}, x\right\rangle=b_{i}\right\}$ for $i=1, \ldots, n$.
Prove that for every $\lambda_{1}, \ldots, \lambda_{n}>0$ there is α such that the hyperplane $H=\left\{\left\langle\sum_{i=1}^{n} \lambda_{i} a_{i}, x\right\rangle=\alpha\right.$ separates Q and P.
4. Let \mathcal{F} be a family of m subsets of $\{1, \ldots, n\}$. We wish to find x_{1}, \ldots, x_{n} such that $\sum x_{i}$ is minimum and $\sum_{i \in S} x_{i} \geq 1$ for every $S \in \mathcal{F}$. Verify that this problem can be written as a linear program. What is the dual (and therefore equivalent) minimization problem?
5. Consider a general linear program of the form $\max \{\langle x, c\rangle \mid A x \leq b\}$. Assume that the vector c does not belong to the span of the rows of the matrix A (in particular A does not have a full rank n). Prove that either there is no maximum for the linear program, or there is no feasible point x satisfying $A x \leq b$.
