Discrete Optimization 2024 (EPFL): Problem set of week 6

April 4, 2024

Reminder: The dual of the linear program $\max\{\langle c, x \rangle \mid Ax \leq b\}$ is the linear program $\min\{\langle y, b \rangle \mid yA = c, y \geq 0\}$

- 1. Consider the following (very easy) maximizaton problem $\max\{x_1 + \ldots + x_n \mid x_1, \ldots, x_n \leq 1\}$. What is the dual minimization problem?
- 2. Consider the following (not very difficult) maximization problem: Find $\max \sum_{i=1}^{n} x_i$ subject to $x_i + x_j \leq 1$ for every $i \neq j$. What is the dual minimization problem? Try to formulate it in a natural way for a graph on *n* vertices.
- 3. Let A be an $m \times n$ matrix with rows a_1, \ldots, a_m and let $b \in \mathbb{R}^m$ be given. Consider the polyhedron P defined by $A\overrightarrow{x} \leq \overrightarrow{b}$.

Assume that $I = \{1, 2, ..., n\}$ is a basis, but not a feasible basis. Denote by Q the point of intersection of the n hyper-planes $\{\langle a_i, x \rangle = b_i\}$ for i = 1, ..., n.

Prove that for every $\lambda_1, \ldots, \lambda_n > 0$ there is α such that the hyperplane $H = \{ \langle \sum_{i=1}^n \lambda_i a_i, x \rangle = \alpha \text{ separates } Q \text{ and } P. \}$

- 4. Let \mathcal{F} be a family of m subsets of $\{1, \ldots, n\}$. We wish to find x_1, \ldots, x_n such that $\sum x_i$ is minimum and $\sum_{i \in S} x_i \ge 1$ for every $S \in \mathcal{F}$. Verify that this problem can be written as a linear program. What is the dual (and therefore equivalent) minimization problem?
- 5. Consider a general linear program of the form $\max\{\langle x, c \rangle \mid Ax \leq b\}$. Assume that the vector c does not belong to the span of the rows of the matrix A (in particular A does not have a full rank n). Prove that either there is no maximum for the linear program, or there is no feasible point x satisfying $Ax \leq b$.