
Discrete optimization 2024 (EPFL):
Problem set of week 5

March 26, 2024

1. Consider the simplex (tetrahedron) P in R3 whose vertices are A =
(1, 0, 0), B = (−1, 1, 0), C = (−1,−1, 0), and D = (0, 0, 1). Find all
the vectors −→c such that the maximum of ⟨−→c ,−→x ⟩ on P is at the vertex
(0, 0, 1).

Solution. One possible solution is direct: write −→c = (x, y, z). We
know that the maximum is always obtained at a vertex. Therefore,
we need that z ≥ x, z ≥ y − x, and z ≥ −x − y. From the last two
inequalities we get 2z ≥ −2x. Now together with the first inequality
this implies z ≥ 0. If z = 0, then necessarily x = 0 and y = 0. We
get the vector (0, 0, 0). This is a ”trivial” solution. If z > 0 we may
assume that it is equal to 1. This is because for any solution −→c also a
positive multiple of it will work. We now get y−x ≤ 1 and −x−y ≤ 1.
This gives x ≥ −1. For every x ≥ −1 we need −(1 + x) ≤ y ≤ 1 + x
Therefore, the solution are all the positive multiples of (x, y, 1) where
x ≥ −1 and −(1 + x) ≤ y ≤ 1 + x.

A more generic solution is to find the three vectors that are orthogonal
to the three hyper-planes meeting at (0, 0, 1) and pointing outside of P .
Denoting these vectors by v1, v2, and v3, there are b1, b2, b3 such that
every point x in P satisfies ⟨−→x , vi⟩ ≤ bi for i = 1.2.3. Denote by Hi

the hyper-plane ⟨−→x , vi⟩ = bi.

Any vector c can be written in one way as −→c = α1v1 + α2v2 + α3v3.
If α1, α2, α3 are nonnegative, then −→c will work for us because (0, 0, 1)
has the maximal scalar product with each of v1, v2, and v3. If one of
α1, α2, α3 is negative, say α1 < 0, then −→c is not a solution because
by moving from (0, 0, 1) in a direction that is ”away from” (makes an
obtuse angle with) v1 along the intersection of H2 and H3, will increase
the scalar product with −→c .
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The solution is therefore, any positive linear combination of v1, v2, and
v3.

2. Let P be the tetrahedron whose vertices areA = (1, 2, 3), B = (2, 1,−1),
C = (1, 1, 0), and D = (2, 1,−3). Find all the vectors −→c such that the
function ⟨−→c , x⟩ is maximized at every point on the edge AC and at no
other point.

Solution. We first find a vector v1 orthogonal to the hyperplane H1,
through A, C and B, and a vector v2 orthogonal to the hyperplane H2,
through A, C and D. Then the answer is any linear combination of v1
and v2 with strictly positive coefficients.

3. Let P ⊂ Rn be the polytope define by the inequalities xi ≥ 0 for
i = 1, . . . , n and a1x1+a2x2+. . .+anxn ≤ 1 for every vector (a1, . . . , an)
whose coordinates are a permutation of the numbers 1, . . . , n. Find all
the neighbors of the vertex O of P .

Solution. It is not hard to check that the lines containing the edges
coming out from P are the lines of the axes spanned by the unit vectors
e1, . . . , en, respectively. Because of the symmetry of the problem, let
us consider the edge contained in the line spanned by e1.

We now check what are the intersection points of the hyperplanes
defining the other facets of P with this line. Consider the hyperplane
{x ∈ Rn : a1x1+ . . .+anxn = 1}. It intersects with the line spanned by
e1 at the point ( 1

a1
, 0, . . . , 0). Therefore, the closest intersection point

to O is the point ( 1
n
, 0, . . . , 0). This is one neighbor of O. The other

neighbors are all the other vectors whose coordinates are all equal to 0
except for one that is equal to 1

n
.

4. Let P be the unit cube in Rn. That is P = {(x1, . . . , xn) | 0 ≤ xi ≤
1, i = 1, . . . , n}. Show that for every −→c ∈ Rn the simplex algorithm
will find the maximum of ⟨−→c ,−→x ⟩ over all −→x ∈ P in at most n iterations
(although it has 2n vertices).

Solution: Notice that the vertices of the cube are precisely the 2n vec-
tors {(x1, . . . , xn) | xi ∈ {0, 1}}. Two vertices are neighbors (adjacent)
if and only if they differ in only one coordinate. This is because every
n − 1 supporting hyperplanes with nonempty intersection fix n − 1 of
the coordinates of the two vertices of the same edge of the cube. When
we apply an iteration of the simplex algorithm, we move from one ver-
tex to a neighbor of it. We say that the index of this iteration is i if
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the two vertices differ at the i’th coordinate. We claim that we never
have two iterations with the same index. This is because if we have an
iteration with index i then ci must be different from 0 or otherwise this
iteration will not improve the value of ⟨−→c ,−→x ⟩. If ci > 0, for example,
then in this iteration we necessarily change xi from 0 to 1. This can
happen only once. We will never change xi from 1 to 0 again because
it will not improve ⟨−→c ,−→x ⟩. Therefore, it cannot be that we will have
another iteration with index i. We argue similarly if ci < 0. It now
follows that there are at most n iterations.

5. For a polytope P it is known that (0, 0, 0) is a vertex of P and its only
neighbors are A = (1, 2, 3), B = (1, 1, 1), and C = (3, 0, 1). Find all the
vectors −→c such that the only improving step when maximizing ⟨−→c , x⟩
with the simplex algorithm if we start at (0, 0, 0) is to move to (1, 1, 1).

Solution. We first find three normal vectors to the three facets meeting
at (0, 0, 0) pointing outside of P . We denote these vectors by vA, vB,
and vC . vA is orthogonal to the hyperplane through O,B, and C and
similarly we take vB and vC .

The answer is then that we can take c to be any linear combination
of vA, vB, and vC such that the coefficients of vA and vC are either
non-negative non-negative and the coefficient of vB is negative or the
non-negative coefficient of vA or vC is dominating the evaluation of cTx
for all x ∈ P such that (1, 1, 1) is the only vertex that is maximized.
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