Discrete optimization 2024 (EPFL): Problem set of week 5

March 26, 2024

1. Consider the simplex (tetrahedron) P in \mathbb{R}^3 whose vertices are A = (1,0,0), B = (-1,1,0), C = (-1,-1,0), and D = (0,0,1). Find all the vectors \overrightarrow{c} such that the maximum of $\langle \overrightarrow{c}, \overrightarrow{x} \rangle$ on P is at the vertex (0,0,1).

Solution. One possible solution is direct: write $\overrightarrow{c} = (x, y, z)$. We know that the maximum is always obtained at a vertex. Therefore, we need that $z \ge x, z \ge y - x$, and $z \ge -x - y$. From the last two inequalities we get $2z \ge -2x$. Now together with the first inequality this implies $z \ge 0$. If z = 0, then necessarily x = 0 and y = 0. We get the vector (0,0,0). This is a "trivial" solution. If z > 0 we may assume that it is equal to 1. This is because for any solution \overrightarrow{c} also a positive multiple of it will work. We now get $y - x \le 1$ and $-x - y \le 1 + x$. Therefore, the solution are all the positive multiples of (x, y, 1) where $x \ge -1$ and $-(1 + x) \le y \le 1 + x$.

A more generic solution is to find the three vectors that are orthogonal to the three hyper-planes meeting at (0, 0, 1) and pointing outside of P. Denoting these vectors by v_1, v_2 , and v_3 , there are b_1, b_2, b_3 such that every point x in P satisfies $\langle \overrightarrow{x}, v_i \rangle \leq b_i$ for i = 1.2.3. Denote by H_i the hyper-plane $\langle \overrightarrow{x}, v_i \rangle = b_i$.

Any vector c can be written in one way as $\overrightarrow{c} = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$. If $\alpha_1, \alpha_2, \alpha_3$ are nonnegative, then \overrightarrow{c} will work for us because (0, 0, 1) has the maximal scalar product with each of v_1, v_2 , and v_3 . If one of $\alpha_1, \alpha_2, \alpha_3$ is negative, say $\alpha_1 < 0$, then \overrightarrow{c} is not a solution because by moving from (0, 0, 1) in a direction that is "away from" (makes an obtuse angle with) v_1 along the intersection of H_2 and H_3 , will increase the scalar product with \overrightarrow{c} . The solution is therefore, any positive linear combination of v_1, v_2 , and v_3 .

2. Let P be the tetrahedron whose vertices are A = (1, 2, 3), B = (2, 1, -1), C = (1, 1, 0), and D = (2, 1, -3). Find all the vectors \overrightarrow{c} such that the function $\langle \overrightarrow{c}, x \rangle$ is maximized at every point on the edge AC and at no other point.

Solution. We first find a vector v_1 orthogonal to the hyperplane H_1 , through A, C and B, and a vector v_2 orthogonal to the hyperplane H_2 , through A, C and D. Then the answer is any linear combination of v_1 and v_2 with strictly positive coefficients.

3. Let $P \subset \mathbb{R}^n$ be the polytope define by the inequalities $x_i \geq 0$ for $i = 1, \ldots, n$ and $a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq 1$ for every vector (a_1, \ldots, a_n) whose coordinates are a permutation of the numbers $1, \ldots, n$. Find all the neighbors of the vertex O of P.

Solution. It is not hard to check that the lines containing the edges coming out from P are the lines of the axes spanned by the unit vectors e_1, \ldots, e_n , respectively. Because of the symmetry of the problem, let us consider the edge contained in the line spanned by e_1 .

We now check what are the intersection points of the hyperplanes defining the other facets of P with this line. Consider the hyperplane $\{x \in \mathbb{R}^n : a_1x_1 + \ldots + a_nx_n = 1\}$. It intersects with the line spanned by e_1 at the point $(\frac{1}{a_1}, 0, \ldots, 0)$. Therefore, the closest intersection point to O is the point $(\frac{1}{n}, 0, \ldots, 0)$. This is one neighbor of O. The other neighbors are all the other vectors whose coordinates are all equal to 0 except for one that is equal to $\frac{1}{n}$.

4. Let P be the unit cube in \mathbb{R}^n . That is $P = \{(x_1, \ldots, x_n) \mid 0 \le x_i \le 1, i = 1, \ldots, n\}$. Show that for every $\overrightarrow{c} \in \mathbb{R}^n$ the simplex algorithm will find the maximum of $\langle \overrightarrow{c}, \overrightarrow{x} \rangle$ over all $\overrightarrow{x} \in P$ in at most n iterations (although it has 2^n vertices).

Solution: Notice that the vertices of the cube are precisely the 2^n vectors $\{(x_1, \ldots, x_n) \mid x_i \in \{0, 1\}\}$. Two vertices are neighbors (adjacent) if and only if they differ in only one coordinate. This is because every n-1 supporting hyperplanes with nonempty intersection fix n-1 of the coordinates of the two vertices of the same edge of the cube. When we apply an iteration of the simplex algorithm, we move from one vertex to a neighbor of it. We say that the index of this iteration is i if

the two vertices differ at the *i*'th coordinate. We claim that we never have two iterations with the same index. This is because if we have an iteration with index *i* then c_i must be different from 0 or otherwise this iteration will not improve the value of $\langle \vec{c}, \vec{x} \rangle$. If $c_i > 0$, for example, then in this iteration we necessarily change x_i from 0 to 1. This can happen only once. We will never change x_i from 1 to 0 again because it will not improve $\langle \vec{c}, \vec{x} \rangle$. Therefore, it cannot be that we will have another iteration with index *i*. We argue similarly if $c_i < 0$. It now follows that there are at most *n* iterations.

5. For a polytope P it is known that (0,0,0) is a vertex of P and its only neighbors are A = (1,2,3), B = (1,1,1), and C = (3,0,1). Find all the vectors \overrightarrow{c} such that the only improving step when maximizing $\langle \overrightarrow{c}, x \rangle$ with the simplex algorithm if we start at (0,0,0) is to move to (1,1,1).

Solution. We first find three normal vectors to the three facets meeting at (0, 0, 0) pointing outside of P. We denote these vectors by v_A, v_B , and v_C . v_A is orthogonal to the hyperplane through O, B, and C and similarly we take v_B and v_C .

The answer is then that we can take c to be any linear combination of v_A, v_B , and v_C such that the coefficients of v_A and v_C are either non-negative non-negative and the coefficient of v_B is negative or the non-negative coefficient of v_A or v_C is dominating the evaluation of $c^T x$ for all $x \in P$ such that (1, 1, 1) is the only vertex that is maximized.