Discrete optimization 2024 (EPFL): Problem set of week 5

March 26, 2024

1. Consider the simplex (tetrahedron) P in \mathbb{R}^{3} whose vertices are $A=$ $(1,0,0), B=(-1,1,0), C=(-1,-1,0)$, and $D=(0,0,1)$. Find all the vectors \vec{c} such that the maximum of $\langle\vec{c}, \vec{x}\rangle$ on P is at the vertex $(0,0,1)$.
Solution. One possible solution is direct: write $\vec{c}=(x, y, z)$. We know that the maximum is always obtained at a vertex. Therefore, we need that $z \geq x, z \geq y-x$, and $z \geq-x-y$. From the last two inequalities we get $2 z \geq-2 x$. Now together with the first inequality this implies $z \geq 0$. If $z=0$, then necessarily $x=0$ and $y=0$. We get the vector $(0,0,0)$. This is a "trivial" solution. If $z>0$ we may assume that it is equal to 1 . This is because for any solution \vec{c} also a positive multiple of it will work. We now get $y-x \leq 1$ and $-x-y \leq 1$. This gives $x \geq-1$. For every $x \geq-1$ we need $-(1+x) \leq y \leq 1+x$ Therefore, the solution are all the positive multiples of $(x, y, 1)$ where $x \geq-1$ and $-(1+x) \leq y \leq 1+x$.
A more generic solution is to find the three vectors that are orthogonal to the three hyper-planes meeting at $(0,0,1)$ and pointing outside of P. Denoting these vectors by v_{1}, v_{2}, and v_{3}, there are b_{1}, b_{2}, b_{3} such that every point x in P satisfies $\left\langle\vec{x}, v_{i}\right\rangle \leq b_{i}$ for $i=1.2 .3$. Denote by H_{i} the hyper-plane $\left\langle\vec{x}, v_{i}\right\rangle=b_{i}$.
Any vector c can be written in one way as $\vec{c}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}$. If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are nonnegative, then \vec{c} will work for us because $(0,0,1)$ has the maximal scalar product with each of v_{1}, v_{2}, and v_{3}. If one of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is negative, say $\alpha_{1}<0$, then \vec{c} is not a solution because by moving from $(0,0,1)$ in a direction that is "away from" (makes an obtuse angle with) v_{1} along the intersection of H_{2} and H_{3}, will increase the scalar product with \vec{c}.

The solution is therefore, any positive linear combination of v_{1}, v_{2}, and v_{3}.
2. Let P be the tetrahedron whose vertices are $A=(1,2,3), B=(2,1,-1)$, $C=(1,1,0)$, and $D=(2,1,-3)$. Find all the vectors \vec{c} such that the function $\langle\vec{c}, x\rangle$ is maximized at every point on the edge $A C$ and at no other point.

Solution. We first find a vector v_{1} orthogonal to the hyperplane H_{1}, through A, C and B, and a vector v_{2} orthogonal to the hyperplane H_{2}, through A, C and D. Then the answer is any linear combination of v_{1} and v_{2} with strictly positive coefficients.
3. Let $P \subset \mathbb{R}^{n}$ be the polytope define by the inequalities $x_{i} \geq 0$ for $i=1, \ldots, n$ and $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq 1$ for every vector $\left(a_{1}, \ldots, a_{n}\right)$ whose coordinates are a permutation of the numbers $1, \ldots, n$. Find all the neighbors of the vertex O of P.

Solution. It is not hard to check that the lines containing the edges coming out from P are the lines of the axes spanned by the unit vectors e_{1}, \ldots, e_{n}, respectively. Because of the symmetry of the problem, let us consider the edge contained in the line spanned by e_{1}.

We now check what are the intersection points of the hyperplanes defining the other facets of P with this line. Consider the hyperplane $\left\{x \in \mathbb{R}^{n}: a_{1} x_{1}+\ldots+a_{n} x_{n}=1\right\}$. It intersects with the line spanned by e_{1} at the point $\left(\frac{1}{a_{1}}, 0, \ldots, 0\right)$. Therefore, the closest intersection point to O is the point $\left(\frac{1}{n}, 0, \ldots, 0\right)$. This is one neighbor of O. The other neighbors are all the other vectors whose coordinates are all equal to 0 except for one that is equal to $\frac{1}{n}$.
4. Let P be the unit cube in \mathbb{R}^{n}. That is $P=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq\right.$ $1, \quad i=1, \ldots, n\}$. Show that for every $\vec{c} \in \mathbb{R}^{n}$ the simplex algorithm will find the maximum of $\langle\vec{c}, \vec{x}\rangle$ over all $\vec{x} \in P$ in at most n iterations (although it has 2^{n} vertices).

Solution: Notice that the vertices of the cube are precisely the 2^{n} vectors $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in\{0,1\}\right\}$. Two vertices are neighbors (adjacent) if and only if they differ in only one coordinate. This is because every $n-1$ supporting hyperplanes with nonempty intersection fix $n-1$ of the coordinates of the two vertices of the same edge of the cube. When we apply an iteration of the simplex algorithm, we move from one vertex to a neighbor of it. We say that the index of this iteration is i if
the two vertices differ at the i 'th coordinate. We claim that we never have two iterations with the same index. This is because if we have an iteration with index i then c_{i} must be different from 0 or otherwise this iteration will not improve the value of $\langle\vec{c}, \vec{x}\rangle$. If $c_{i}>0$, for example, then in this iteration we necessarily change x_{i} from 0 to 1 . This can happen only once. We will never change x_{i} from 1 to 0 again because it will not improve $\langle\vec{c}, \vec{x}\rangle$. Therefore, it cannot be that we will have another iteration with index i. We argue similarly if $c_{i}<0$. It now follows that there are at most n iterations.
5. For a polytope P it is known that $(0,0,0)$ is a vertex of P and its only neighbors are $A=(1,2,3), B=(1,1,1)$, and $C=(3,0,1)$. Find all the vectors \vec{c} such that the only improving step when maximizing $\langle\vec{c}, x\rangle$ with the simplex algorithm if we start at $(0,0,0)$ is to move to $(1,1,1)$.

Solution. We first find three normal vectors to the three facets meeting at $(0,0,0)$ pointing outside of P. We denote these vectors by v_{A}, v_{B}, and $v_{C} . v_{A}$ is orthogonal to the hyperplane through O, B, and C and similarly we take v_{B} and v_{C}.

The answer is then that we can take c to be any linear combination of v_{A}, v_{B}, and v_{C} such that the coefficients of v_{A} and v_{C} are either non-negative non-negative and the coefficient of v_{B} is negative or the non-negative coefficient of v_{A} or v_{C} is dominating the evaluation of $c^{T} x$ for all $x \in P$ such that $(1,1,1)$ is the only vertex that is maximized.

