Discrete Optimization 2024 (EPFL): Problem set of week 5

March 26, 2024

1. Consider the simplex (tetrahedron) P in \mathbb{R}^{3} whose vertices are $A=$ $(1,0,0), B=(-1,1,0), C=(-1,-1,0)$, and $D=(0,0,1)$. Find all the vectors \vec{c} such that the maximum of $\langle\vec{c}, \vec{x}\rangle$ on P is at the vertex $(0,0,1)$.
2. Let P be the tetrahedron whose vertices are $A=(1,2,3), B=(2,1,-1)$, $C=(1,1,0)$, and $D=(2,1,-3)$. Find all the vectors \vec{c} such that the function $\langle\vec{c}, x\rangle$ is maximized at every point on the edge $A C$ and at no other point.
3. Let $P \subset \mathbb{R}^{n}$ be the polytope define by the inequalities $x_{i} \geq 0$ for $i=1, \ldots, n$ and $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \leq 1$ for every vector $\left(a_{1}, \ldots, a_{n}\right)$ whose coordinates are a permutation of the numbers $1, \ldots, n$. Find all the neighbors of the vertex O of P.
4. Let P be the unit cube in \mathbb{R}^{n}. That is $P=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq\right.$ $1 i=1, \ldots, n\}$. Show that for every $\vec{c} \in \mathbb{R}^{n}$ the simplex algorithm will find the maximum of $\langle\vec{c}, \vec{x}\rangle$ over all $\vec{x} \in P$ in at most n iterations (although it has 2^{n} vertices).
5. For a polytope P it is known that $(0,0,0)$ is a vertex of P and its only neighbors are $A=(1,2,3), B=(1,1,1)$, and $C=(3,0,1)$. Find all the vectors \vec{c} such that the only improving step when maximizing $\langle\vec{c}, x\rangle$ with the simplex algorithm if we start at $(0,0,0)$ is to move to $(1,1,1)$.
