Discrete Optimization 2024 (EPFL): Problem set of week 4

March 21, 2024

1. Let A be the matrix
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right)$.
Let $\vec{b}=(1,1,1,1,1)$ and let $P=\left\{\vec{v}=(x, y, z) \in \mathbb{R}^{3} \mid A \vec{v} \leq \vec{b}\right\}$.
Show that P is a bounded polytope and find all its vertices.
What is the maximum value of $x+2 y+3 z$ on P ?
Solution. P is clearly a polyhedron. To see that it is bounded (and therefore, a polytope) observe that by the first three rows of A we get for every point $(x, y, z) \in P$ that $x, y, z \leq 1$. Moreover, $-x-y-z \leq 1$ and consequently $x \geq-z-y-1 \geq-3$. Similarly, $y, z \geq-3$. This shows that P is bounded.

To find the vertices of P we notice that three linearly independent rows of A are every three that do not contain the last two rows together. This leaves 7 options. These are the first three rows, the forth row and any two of the first three (there is a symmetry here) and finally, the last row and any two of the first three (here too there is symmetry).
The first three rows of A suggest the vertex $(1,1,1)$. However, this point is not feasible, as it does not satisfy the inequality of the forth line of A.
Considering the forth row of A and the first two, we get the point $(1,1,-1)$. This is a feasible point and therefore a vertex. Similarly, $(1,-1,1)$ and $(-1,1,1)$ are vertices.

Considering the fifth row of A and the first two, we get the point $(1,1,-3)$. This is a feasible point and therefore a vertex. Similarly, $(1,-3,1)$ and $(-3,1,1)$ are vertices.
These are all the six vertices of P.
2 . Let A be the $2^{n} \times n$ matrix whose rows are all the 2^{n} possible combinations of 1 and -1 . Let $\vec{b}=(1,1,1, \ldots, 1) \in \mathbb{R}^{2^{n}}$.
Show that $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ is a polytope and find all its vertices.
Solution. Observe that if $\left(x_{1}, \ldots, x_{n}\right) \in P$, then necessarily $\left|x_{1}\right|+$ $\ldots+\left|x_{n}\right| \leq 1$. This is because we can choose the inequality defined by the row of A in which the +1 's and -1 's correspond to the signs of the coordinates x_{1}, \ldots, x_{n}. In particular, P is bounded and therefore it is a polytope.
We notice also that if $\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1$. then $\left(x_{1}, \ldots, x_{n}\right)$ is in P. Therefore, P is precisely the set of all points $\left(x_{1}, \ldots, x_{n}\right)$ with $\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1$. Therefore, any point on the boundary of P and in particular the vertices of P must satisfy $\left|x_{1}\right|+\ldots+\left|x_{n}\right|=1$.
If $\left(x_{1}, \ldots, x_{n}\right)$ is a point with $\left|x_{1}\right|+\ldots+\left|x_{n}\right|=1$ and both $\left|x_{i}\right|$ and $\left|x_{j}\right|$ are greater than 0 , then we may increase the absolute value of x_{i} and at the same time decrease by the same amount the absolute value of x_{j} and remain in P. We can also do the opposite operation and remain in P. Hence, there is a vector v such that both $\vec{x}+\vec{v}$ and $\vec{x}-\vec{v}$ are in P. This implies that \vec{x} cannot be a vertex. There cannot be a supporting hyperplane for P that meet P only at \vec{x}.
We conclude that the only possible candidates for vertices are the $2 n$ points $\left(x_{1}, \ldots, x_{n}\right)$ with all the coordinates being equal to 0 except one coordinate that is equal either to 1 or -1 . Because of symmetry, they are all vertices.
3. Let A be the matrix $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3\end{array}\right)$. Let $b=(0,0,0,-6)$ and let $P=\left\{x \in \mathbb{R}^{3} \mid A x \leq b\right\}$. Find all the vertices of P and for each vertex find a supporting hyperplane.
Solution: The vertices are $(-6,0,0),(0,-3,0)$, and $(0,0,-2)$. For each vertex consider the three facets meeting at this vertex and as we did in class take as a normal vector to the supporting hyperplane the sum
of the three normals to the three facets. For example, a supporting hyperplane at the vertex $(-6,0,0)$ is $\{x+3 y+4 z=-6\}$
4. Let $P \subset \mathbb{R}^{n}$ be the cube defined by $P=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid-1 \leq x_{1}, \ldots, x_{n} \leq 1\right\}$.
a) Find a matrix A and a vector b such that $P=\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$.
b) Show that the vertices of P are precisely all the 2^{n} points $(\pm 1, \pm 1, \ldots, \pm 1)$.

Solution: a) Take $A=\binom{I_{n}}{-I_{n}}$. Then take $b=(1,1, \ldots, 1) \in \mathbb{R}^{2 n}$.
b) Taking any n linearly independent rows of the matrix A and solving $A_{I} x=b_{I}$ clearly gives only solutions of the form $(\pm 1, \pm 1, \ldots, \pm 1)$. To see that each such point is indeed a vertex let \vec{v} be a vector whose coordinates are all equal to either +1 or -1 . Then take $c=\vec{v}$ and observe that is $x \in P$, then $\langle c, x\rangle \leq n$ because each coordinate of c is either +1 or -1 and each coordinate of x is between -1 and 1 . Moreover, equality is possible only if every coordinate of x is equal to the corresponding coordinate of c, that is if $x=\vec{v}$. Indeed we notice that $\langle c, \vec{v}\rangle=\langle\vec{v}, \vec{v}\rangle=n$.

