Discrete Optimization 2024 (EPFL): Problem set of week 3

March 9, 2024

- 1. A set K in \mathbb{R}^n is called *convex* if for every x and y in K and for every $0 \le \lambda \le 1$ also the point $\lambda x + (1 \lambda)y$ is in K. In other words, the entire line segment with endpoints x and y is in K.
 - a) Prove that any intersection of convex sets is convex.
 - b) For any given $\overrightarrow{a} \in \mathbb{R}^n$ and any $b \in \mathbb{R}$ prove algebraically (from the algebraic definitions) that the half-space $\{\overrightarrow{x} \mid < \overrightarrow{x}, \overrightarrow{a} > \leq b\}$ is convex.
 - c) Conclude from a) and b) that every intersection of half-spaces is convex.
- 2. Let Q be the quadrangle in the plane whose vertices are (4,3), (3,4), (2,3), and (3,2). Find a matrix A and a vector \overrightarrow{b} such that $Q = \{\overrightarrow{v} \mid A\overrightarrow{v} \leq \overrightarrow{b}\}$.
- 3. Let B be the box in \mathbb{R}^3 defined by $B = \{\overrightarrow{v} = (x, y, z) \mid 1 \leq x \leq 5, -2 \leq y \leq 6, 0 \leq z \leq 2\}$. Find a matrix A and a vector \overrightarrow{b} such that $B = \{\overrightarrow{v} = (x, y, z) \mid A\overrightarrow{v} \leq \overrightarrow{b}\}$.
- 4. Let P be the three dimensional pyramid with vertices (1, 1, -6), (1, 3, -4), (-1, -2, 5), and (3, 5, 1). Find $\overrightarrow{c} \in \mathbb{R}^3$ such that the function $\langle \overrightarrow{c}, (x, y, z) \rangle$ attains its maximum on P precisely at the vertex (1, 3, -4).
- 5. Let P be the polyhedron defined by $P = \{v \mid A\overrightarrow{x} \leq \overrightarrow{b}\}$. Assume that v_1, \ldots, v_k are k points in P and $v_1 + \ldots + v_k = 0$. Show that $0 \in P$.