Linear Programming 2023 (EPFL): Problem set of week 2

March 5, 2024

1. Show that the three medians in a triangle with vertices v_{1}, v_{2}, and v_{3} meet at the point $\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)$.

Solution. The point in the middle of the edge $v_{1} v_{2}$ is $\frac{v_{1}+v_{2}}{2}$. Notice that $\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)=\frac{1}{3} v_{3}+\frac{2}{3}\left(\frac{v_{1}+v_{2}}{2}\right)$. Therefore, the point $\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)$ lies on the median going from v_{3} to the opposite edge. By symmetry it lies also on the other two medians.
2. Find the hyperplane passing through $(1,1,1)$ that is perpendicular to both hyperplanes $\{x+2 y+z=2\}$ and $\{x-y-3 z=8\}$ in \mathbb{R}^{3}.

Solution. The hyperplane equation is $a x+b y+c z=d$. We are looking for (a, b, c) that is perpendicular to both $(1,2,1)$ and $(1,-1,-3)$. We find it: $(5,-4,3)$, or any multiple of it. Then we need $(1,1,1)$ to be on the hyperplane. This gives: $d=5-4+3=4$. The answer is $\{5 x-4 y+3 z=4\}$.
3. Find the closest point to $(3,5,4)$ on the hyperplane $\{2 x+4 y-z=3\}$ in \mathbb{R}^{3}.

Solution. We are looking for a point (a, b, c) such that $(a, b, c)-(3,5,4)$ is a multiple of $(2,4,-1)$. In addition it must be on the hyperplane and so $2 a+4 b-c=3$.
Alternatively, we are looking for t such that $(3,5,4)+t(2,4,-1)$ (which is the point we are looking for) is on the hyperplane. This gives $2(3+$ $2 t)+4(5+4 t)-(4-t)=3$. We find $t=-\frac{19}{21}$.
4. Find the distance of the origin O to the line of intersection of the hyperplanes $\{x+y+z=1\}$ and $\{2 x-y+3 z=1\}$ in \mathbb{R}^{3}.

Solution. We first find the direction of the line of intersection of the two hyperplanes. It is in the direction perpendicular to both $(1,1,1)$ and $(2,-1,3)$. We can take $(4,-1,-3)$ or any constant multiple of it. We now find a point on the line of intersection of the two hyperplanes: $\left(1, \frac{1}{4},-\frac{1}{4}\right)$, for example. Now we need to find t such that $\left(1,-\frac{1}{4}, \frac{1}{4}\right)+t(4,-1,-3)$ is perpendicular to $(4,-1,-3)$. Then find the distance from the origin to $\left(1,-\frac{1}{4}, \frac{1}{4}\right)+t(4,-1,-3)$. This just follows the approach of Exercise 3. We find $t=-\frac{9}{52}$.
5. Find a point that is inside the tetrahedron whose facets are:
$\{x+y+z=1\},\{2 x-3 y-z=2\},\{x-3 y+z=4\}$, and $\{2 x-y+3 z=1\}$.
Solution. One way is to find the four vertices of the tetrahedron. We do this by solving four times a system of three equations in three variables. This equivalent to intersecting each three of the hyperplanes. So, $A=h_{1} \cap h_{2} \cap h_{3}=(0.5,-0.75,1.25)^{\top}, B=h_{1} \cap h_{2} \cap h_{4}=$ $(8 / 7,3 / 14,-5 / 14)^{\top}, C=h_{1} \cap h_{3} \cap h_{4}=(5,-0.75,-13 / 4)^{\top}$ and $D=$ $h_{4} \cap h_{2} \cap h_{3}=(-1,-1.5,0.5)^{\top}$.
The point $\frac{1}{4}(A+B+C+D)=\left(\frac{79}{64},-\frac{39}{64},-\frac{13}{28}\right)$ must be inside the tetrahedron since it is a convex combination of the vertices and the tetrahedron, as it is a polytope, is defined as the convex hull of its vertices. It is a convex combination since the sum of the four coefficients is $4 \cdot \frac{1}{4}=1$ and also $0 \leq \frac{1}{4} \leq 1$. Furthermore, $\frac{1}{2} A+\frac{1}{2}\left(\frac{A+B+C}{3}\right)$ is inside the tetrahedron for the same reasoning.

