Discrete Optimization 2024 (EPFL): Problem set of week 9

April 28, 2024

Reminder: Farkas' Lemma (version I): Ax = b with $x \ge 0$ has a solution iff for every $q \in \mathbb{R}^m$ such that $qA \ge 0$ we have also $\langle q, b \rangle \ge 0$.

Farkas' Lemma (version II): $Ax \leq b$ has a solution iff $q \geq 0$ and qA = 0, implies $\langle q, b \rangle \geq 0$.

- 1. Find a hyperplane separating the point x = (1,3,9) from the cone in \mathbb{R}^3 generated by the three vectors $v_1 = (1,1,1), v_2 = (1,2,3)$, and $v_3 = (1,2,1)$.
- 2. Let K be a cone in \mathbb{R}^n . Prove that any hyper-plane H supporting K must pass through the origin O.
- 3. Prove that $A\overrightarrow{x} = \overrightarrow{b}$ has a solution (we do not require $x \ge 0$ as in Farkas' Lemma) if and only if for every y such that yA = 0 we also have $\langle y, b \rangle = 0$.
- 4. Prove the following Farkas-like Lemma: Ax < 0, $x \ge 0$ has a solution if and only if there is no $y \ge 0$, $y \ne 0$ such that $yA \ge 0$.
- 5. Prove the following Farkas-like Lemma: Ax = 0, x > 0 has a solution if and only if there is no y such that $yA \ge 0$ and $yA \ne 0$.