Discrete Optimization 2024 (EPFL): Problem set of week 9

April 28, 2024

Reminder: Farkas' Lemma (version I): $A x=b$ with $x \geq 0$ has a solution iff for every $q \in \mathbb{R}^{m}$ such that $q A \geq 0$ we have also $\langle q, b\rangle \geq 0$.

Farkas' Lemma (version II): $A x \leq b$ has a solution iff $q \geq 0$ and $q A=0$, implies $\langle q, b\rangle \geq 0$.

1. Find a hyperplane separating the point $x=(1,3,9)$ from the cone in \mathbb{R}^{3} generated by the three vectors $v_{1}=(1,1,1), v_{2}=(1,2,3)$, and $v_{3}=(1,2,1)$.
2. Let K be a cone in \mathbb{R}^{n}. Prove that any hyper-plane H supporting K must pass through the origin O.
3. Prove that $A \vec{x}=\vec{b}$ has a solution (we do not require $x \geq 0$ as in Farkas' Lemma) if and only if for every y such that $y A=0$ we also have $\langle y, b\rangle=0$.
4. Prove the following Farkas-like Lemma: $A x<0, x \geq 0$ has a solution if and only if there is no $y \geq 0, \quad y \neq 0$ such that $y A \geq 0$.
5. Prove the following Farkas-like Lemma: $A x=0, x>0$ has a solution if and only if there is no y such that $y A \geq 0$ and $y A \neq 0$.
