Discrete Optimization 2024 (EPFL): Problem set of week 8

May 2, 2024

Reminder: The min-max theorem for zero-sum games with mixed strategies says that for every $m \times n$ matrix A we have

$$
\min _{y} \max _{x} y A x=\max _{x} \min _{y} y A x
$$

where the minimum is over all $y=\left(y_{1}, \ldots, y_{m}\right) \geq 0$ such that $\sum y_{i}=1$. The maximum is over all $x=\left(x_{1}, \ldots, x_{n}\right) \geq 0$ such that $\sum x_{i}=1$.

1. Let A be an $m \times n$ matrix. Assume that there is an entry in A that is the minimum in its column and the maximum in its row. Prove that this entry is the value of the zero-sum game with for two players with mixed strategies.
2. Find $\max _{x} \min _{y} y A x$ for the matrix

$$
A=\left(\begin{array}{ll}
5 & 1 \\
3 & 4
\end{array}\right)
$$

What is the (mixed) strategy for the column player to guarantee the maximum possible result?
3. Find the min-max value for the diagonal matrix with $\lambda_{1}, \ldots, \lambda_{n}$ on the main diagonal.
4. Show that in a zero-sum game with a matrix A with mixed strategies the following is true: If one player knows the mixed strategy of the other player, then the best response (strategy) for him is a pure strategy. That is, the best response is choosing just one row or column.
5. Find a hyperplane separating the point $v=(4,3,6)$ from the ball $\left\{(x, y, z) \mid(x-1)^{2}+(y-2)^{2}+(z-3)^{2} \leq 16\right\}$.

