Discrete Optimization 2024 (EPFL): Problem set of week 4

March 14, 2024

1. Let A be the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{pmatrix}.$$

Let $\overrightarrow{b} = (1, 1, 1, 1, 1)$ and let $P = \{\overrightarrow{v} = (x, y, z) \in \mathbb{R}^3 \mid A\overrightarrow{v} \leq \overrightarrow{b}\}$. Show that P is a bounded polytope and find all its vertices.

What is the maximum value of x + 2y + 3z on P?

2. Let A be the $2^n \times n$ matrix whose rows are all the 2^n possible combinations of 1 and -1. Let $\overrightarrow{b} = (1, 1, 1, \dots, 1) \in \mathbb{R}^{2^n}$.

Show that $\{\overrightarrow{x} \mid A\overrightarrow{x} \leq \overrightarrow{b}\}$ is a polytope and find all its vertices.

3. Let A be the matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{pmatrix}$. Let b = (0, 0, 0, -6) and Let

 $P = \{x \in \mathbb{R}^3 \mid Ax \leq b\}$. Find all the vertices of P and for each vertex find a supporting hyperplane.

- 4. Let $P \subset \mathbb{R}^n$ be the cube defined by $P = \{(x_1, \dots, x_n) \mid -1 \leq x_1, \dots, x_n \leq 1\}.$
 - a) Find a matrix A and a vector b such that $P = \{ \overrightarrow{x} \mid A \overrightarrow{x} \leq \overrightarrow{b} \}$.
 - b) Show that the vertices of P are precisely all the 2^n points $(\pm 1, \pm 1, \dots, \pm 1)$.