Discrete Optimization 2024 (EPFL): Problem set of week 4

March 14, 2024

1. Let A be the matrix
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right)$.
Let $\vec{b}=(1,1,1,1,1)$ and let $P=\left\{\vec{v}=(x, y, z) \in \mathbb{R}^{3} \mid A \vec{v} \leq \vec{b}\right\}$.
Show that P is a bounded polytope and find all its vertices.
What is the maximum value of $x+2 y+3 z$ on P ?
2. Let A be the $2^{n} \times n$ matrix whose rows are all the 2^{n} possible combinations of 1 and -1 . Let $\vec{b}=(1,1,1, \ldots, 1) \in \mathbb{R}^{2^{n}}$.
Show that $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ is a polytope and find all its vertices.
3. Let A be the matrix $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3\end{array}\right)$. Let $b=(0,0,0,-6)$ and Let $P=\left\{x \in \mathbb{R}^{3} \mid A x \leq b\right\}$. Find all the vertices of P and for each vertex find a supporting hyperplane.
4. Let $P \subset \mathbb{R}^{n}$ be the cube defined by $P=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid-1 \leq x_{1}, \ldots, x_{n} \leq 1\right\}$.
a) Find a matrix A and a vector b such that $P=\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$.
b) Show that the vertices of P are precisely all the 2^{n} points $(\pm 1, \pm 1, \ldots, \pm 1)$.
