
Graph Theory 2023 (EPFL): Problem
set of week 14

December 21, 2023

1. Let G be a graph on n vertices. Show that the edges of G can be
partitioned into at most n/2 tours. The tours can be closed or not but
no two tours can share an edge.

Solution: We may assume that G is connected, or else we work on each
connected component separately. Observe that G must have an even
number of vertices of odd degree. This is because the sum of all degrees
is an even number. Add an artificial x vertex to G and connect it to
all vertices that have odd degree in G. We get a new graph G′ that
is connected and all its degrees are even. Use Euler’s theorem to find
Euler cycle in G′. Then removing x we split the cycle into at most n/2
paths (in fact it will be half the number of vertices with odd degree in
G) that include all edges in G.

2. Let M be a planar map representing a crossing free drawing of a planar
bipartite graph. Prove that there is a closed curve in the plane that
crosses every edge of M precisely once.

Solution: Because M is bipartite, every face in M must have an even
number of edges. We define a graph on the faces of M . We choose
an arbitrary point inside a face as a vertex to represent this face and
we draw an edge between two vertices if the corresponding faces that
have a common edge in M (more precisely, we draw an edge between
two faces for every common edge they have and so two faces may be
connected by more than one edge). Because every face in M has an
even number of edges, the resulting new graph has all of its degrees
even. It is easily seen to be connected (we can reach every face from
every other face by moving between two neighboring faces). An Euler
cycle in the new graph is precisely the curves that we are looking for.

1



3. Let G be a graph. The edge-graph of G that we denote by G′ is a graph
whose vertices are the edges of G. Two vertices of G′ are connected by
an edge if the corresponding edges in G share a vertex.

Show that if G has Euler cycle, then G′ has a Hamilton cycle and also
an Euler cycle.

Solution: To see that G′ has a Hamilton cycle, just follow the Euler
cycle in G. It contains all the edges in G and move from an edge to
another edge that has a common vertex with it. This is precisely a
Hamilton cycle in G′. Now observe that the degree of each vertex in G
is even. Therefore, every edge in G is connected to an even number of
other edges in G. It follows now that all the degrees in G′ are even. G′

is also connected and so it has an Euler cycle.

4. Let G be a graph on n vertices with (n− 1)(n− 2)/2 + 2 edges. Show
that G has a Hamilton cycle. Give an example for a graph with n
vertices and (n− 1)(n− 2)/2 + 1 edges that does not have a Hamilton
cycle.

Solution: We claim that for every two nonadjacent vertices x and y
in G we have d(x) + d(y) ≥ n (and then G has a Hamilton cycle by
a theorem we proved in class). Indeed, otherwise there are two non-
adjacent vertices x and y that together have at most n−1 edges incident
to them. Then the maximum possible number of edges in G would be(
n
2

)
− (2n− 3) + (n− 1) = (n− 1)(n− 2)/2 + 1, a contradiction.

The complete graph on n − 1 vertices together with an extra vertex
connected by a single edge to another vertex is an example of a graph
with (n− 1)(n− 2)/2 + 1 vertices and no Hamilton cycle (why?).

5. n tennis players play
(
n
2

)
games with one another so that every two

play once. Prove that it is always possible to arrange the people in a
row such that every person (except for the leftmost) won the person
standing to its left.

Solution: Consider the longest possible such row of people x1x2 . . . xk.
We will show that it contains all people (that is k = n). Assume not
and consider a person y that is not there. It must be that xk won y, or
else we could place y to the right of xk and get a longer row. Similarly,
it must be that y won x1, or else we could place y to the left of x1 and
get a longer row. It follows now (by kind of continuity argument) that
there must be i such that xi won y and y won xi−1 (why?). We can
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now take the longer row x1x2 . . . xi−1yxi . . . xk. This is a contradiction
to this we started with the longest row possible.
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