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1. Show that for any k there is n(k) such that in any set of n > n(k)
points in R3 either there are k points on the same 2-dimensional plane,
or there are k points no 4 of them lie on a common plane.

Proof: We make a 4-uniform hypergraph with vertices denoting the k
points. We add a hyperedge to each 4-tuple of the k points. Then we
take n(k) = R4(k, k). Given n > n(k) points in R3, we color all the
4-tuples of points (hyperedges!) in two colors red and blue. We color a
4-tuple of points (a hyperedge!) blue if the 4 vertices inside the tuple
are contained in a plane. Otherwise, we color the hyperedge red.

Then we can either find k points such that all the hyperedges are red
(which is precisely k points such that no 4 of them lie on a common
plane). If we find k points such that every 4 of them lie on a common
plane (so all hyperedges going between the k points are blue), then we
claim that in this case all the points lie on a common plane. Indeed, as-
sume there are three points A,B,C among them that are not collinear.
Then the unique plane passing through A,B,C must also contain every
other point from the set. If every three points are collinear, then all
the points lie on one line and in particular on one (not unique) plane.

2. Show that for every k there is n(k) such that if n > n(k) and we color
the set of all rational numbers a

b
such that 1 ≤ a < b ≤ n by k colors,

then one can find a monochromatic triple of such rational numbers
x, y, z such that xy = z.

Proof. Similar to Schur’s theorem. We take n(k) = Rk(3, 3, . . . , 3).
We color the edges of the complete graph on the vertices 1, . . . , n by k
colors in the following way. For i < j we color (i, j) by the color of the
rational number i

j
.
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Then we can find three numbers i < j < ℓ such that all pairs are say
red. This means in particular that x = a/b, y = b/c, and z = a/c are all
rational numbers colored red in the original coloring. We have xy = z.

3. Let G be an infinite graph. That is, a graph on a set of vertices that is
infinite. Prove that if G is connected (there is a path between any two
vertices), then either there is a vertex of infinite degree in G, or there
is an infinite path in G (could be that both exist).

Proof. If there is a vertex of infinite degree, we are done. Otherwise,
assume every vertex has only finite degree. Start from a vertex v1. It
has finitely many neighbors a1, . . . , ak. For each i let Ai denote the
set of all vertices that are reachable by a simple (without recurrent
vertices) path starting from ai that avoids v1. One of the sets Ai must
be infinite, because G is infinite and connected. We rename ai as v2
and we consider only the subgraph of G that consist of the union of
all simple paths starting as v2 and not containing v1. We now continue
this way with v2 in the role of v1. We find v3, . . . and thus generate an
infinite path.

4. Let k be fixed. Prove that for any coloring of the two dimensional
integer grid points (these are points of the form (a, b), where both
a and b integers) with k one can find integers x1 < . . . < x100 and
y1 < . . . < y100 such that all the points (xi, yj) have the same color.

Proof. There is more than one way to do this. We will present a proof
that is more related to Ramsey. Consider the diagonal grid points (i, i)
where i is an integer. We consider the (infinite graph) on the set of
integers and for i < j we color the edge between i, j by the color of
the point (i, j). We get a coloring of the complete infinite graph with k
colors. We can find there a large monochromatic (say red) set. Larger
than 200 (in fact we can find infinite monochromatic set).

These 200 vertices we write as x1 < x2 < . . . < x100 < y1 < y2 < . . . <
y100. Then for every 1 ≤ i, j ≤ 100 we have (xi, yj) is colored red, as
desired.
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