
Graph Theory 2023 (EPFL): Problem
set of week 10

November 23, 2023

1. If G = A ∪ B is bipartite and the degree of every vertex in A is ≥ k
and the degree of every vertex in B is ≤ k, then G has a matching of
all the vertices in A.

Solution: We check that Hall’s condition is satisfied. Take X ⊂ A and
consider N(X). The number of edges running between X and N(X) is
≥ k|X| (because the degree of every vertex in A is at least k). On the
other hand it is at most k|N(X)| (because the degree of every vertex
in B is at most k). It follows now that k|X| ≤ k|N(X)|, or in other
words |X| ≤ |N(X)|, as desired.

2. Let G be a bipartite graph: V (G) = A ∪ B. Assume that there is a
matching MA in G that includes all the vertices in A′ ⊂ A and there
is another matching MB in G that includes all the vertices in B′ ⊂ B.
Show that there is a matching M in G that includes all the vertices in
A′ ∪B′.

Is the same true for general graphs?

Solution: Consider the union of MA and MB. This is a graph where
the degree of each vertex is at most 2. Therefore, it is a union of paths
and cycles. Notice that the cycles must be even cycles.

Consider any one of the paths and observe that if it has an even number
of edges, then it must have its end vertices either both in A or both in
B (here we use the fact that G is bipartite). However, if say both end
vertices of a path of even length are, say, in A, then it cannot be that
both are also in A′ because then this path should have ended on both
ends by edges in MA, which is impossible for a path of even length.
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Now it should be easy to get M . From each (even) cycle take half of
the edges to M (every second one). From every path with 2k+ 1 (odd
number of) edges take k+1 edges and all vertices to M . From paths of
even length take half of the edges to M and make sure that the vertex
that is not included is the one not in A′ (respectively, not in B′).

This will not work if the graph G is not bipartite. For example think
of G being a triangle and let two vertices be in A′ while the third being
in B′.

3. Let G be a graph and let M be a matching in G. Show that there is a
maximum matching in G (that is, matching of maximum possible size)
that involves every vertex in the matching M .

Solution: Consider the maximum matching M ′ of G that uses the max-
imum number of vertices in the matching M . If all vertices of M are
used, we are done. Otherwise, take a vertex x1 in M that is not in M ′.
Let x2 be the match of x1 in M . x2 must be in M ′, or else we could add
(x1, x2) to M ′ contradicting maximality. Now let x3 be the match of x2

in M ′ (there must be such x3, why?). The vertex x3 must be in M , or
else we could take for M ′ the edge (x1, x2) instead of (x2, x3) and get a
maximum matching sharing more vertices in M . Let x4 be the match
of x3 in M . Again, x4 must be in M ′, or else x1x2x3x4 is an augmenting
path for M ′. Let x5 be the match of x4 in M ′. We claim that x5 must
be in M . Otherwise, replace x2x3 and x4x5 in M ′ with x1x2 and x3x4

and get a maximum size matching with more common vertices with
M . We continue like this and either we get an augmenting path for
M ′, which is impossible, or we can replace M ′ by another maximum
matching with more common vertices with M , or we can continue for-
ever which is impossible because we see more and more vertices and
our graph is finite. This contradiction shows that M ′ contains every
vertex in M .

4. Let A be an n × n bi-stochastic matrix. Show that one can find
permutation matrices P1, . . . , Pk and 0 ≤ λ1, . . . , λk ≤ 1 such that
A =

∑k
i=1 λiPi. (Recall that a permutation matrix is a matrix that has

precisely one 1 entry in each row and each column and all the other
entries are equal to 0.)

Solution: By the theorem we have seen in class, there is a permutation
π such that ai,π(i) > 0 for every i. Let λ = mini(ai,π(i)). Let P be the
permutation matrix that has 1’s at the entries (i, π(i)) for i = 1, . . . , n.
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If λ = 1, then A = P , and we are done. Otherwise, 1
1−λ

(A − λP ) is
again a nonnegative bi-stochastic matrix (why?) and it has at least
one more entry than A that is equal to 0. We can therefore conclude
by the induction hypothesis (on the number of nonzero entries in A)
that 1

1−λ
(A−λP ) =

∑k
i=2 λiPi, where

∑k
i=2 λi = 1. It now follows that

A = λP + (1− λ)
∑k

i=2 λiPi and this is the desired result (check!).
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