Graph Theory 2023 (EPFL): Problem set of week 9

November 16, 2023

1. Given $n>9$ points in the plane such that no three of them are on a line. Show that one can find at least $c n^{4}$ (for some absolute constant c) quadruples of points that form the set of vertices of a convex quadrilateral.

Solution: We notice that any two crossing segments give rise to a unique quadruple of points forming a convex quadrilateral. Consider the complete geometric graph with the n points as vertices. It has $\binom{n}{2}$ edges and therefore, at least $\frac{1}{64} e^{3} / n^{2}$ crossings. Because $e=\binom{n}{2}>n^{2} / 4$ we get at least $c n^{4}$ crossing and therefore at least $c n^{4}$ convex quadrilaterals.
2. Find geometric graphs with n vertices and e edges and only $c e^{3} / n^{2}$ crossings for every e and n.
Hint: consider a set of n points on a unit circle. Then take the "shortest" possible chords.

Solution: Take n vertices of a convex n-gon. Then take all the n edges between points of distance 1 (distance 1 is adjacent vertices on the boundary of the n-gon). Then take the n edges between vertices if distance 2 and so on. We do this until we get e edges. This means that we took all the chords of "length" (number of edges of the polygon between the two vertices) smaller than or equal to e / n.
Now, an edge of "length" k crosses precisely $2(k-1)$ edges of every $i>k$. In this way we count all the crossings.
Therefore, we have $\sum_{k=1}^{e / n} n \cdot 2(k-1) \cdot(e / n-k)$. This gives the desired result.
3. G is a graph with n vertices that can be drawn in the plane in such a way that every edge is crossed by at most one other edge. Show that the number of edges in G is at most $10 n$.
Solution: By our assumptions the number of crossings in the drawing of G is at most $e / 2$. On the other hand we know that if the number of edges in G is at least $4 n$ (if it is not, we are done), then the number of crossings must be at least $\frac{1}{64} e^{3} / n^{2}$. This implies

$$
\frac{1}{64} e^{3} / n^{2} \leq e / 2
$$

From here we get $e \leq \sqrt{32} n$.
4. Let G be a graph with n vertices and e edges. Prove that G has at least $c e^{3} / n^{2}$ distinct paths of three edges.

Solution: There is more than one way to do this. We will adapt the probabilistic argument in the proof of the crossing lemma:
We know that any graph with more than $30 n$ edges contains a path of length 3. Therefore, the number of distinct paths of length 3 in a graph with n vertices and e edges is at least $e-30 n$.
Denote by Z the number of distinct paths of length 3 in our graph. We take every vertex with probability p and consider the graph on the resulting set of vertices. The number of vertices in the new graph is in expectation $p n$. The number of edges is in expectation $p^{2} e$. The number of paths of length 3 is in expectation $p^{4} Z$.
Therefore, $p^{4} Z \geq p^{2} e-30 p n$. We get $Z \geq e / p^{2}-30 n / p^{3}$. Taking $p=c n / e$ for an appropriate constant c (that you should find) gives the desired result.

