Graph Theory 2023 (EPFL): Problem set of week 7

November 7, 2023

1. Let A_{1}, \ldots, A_{n} be n subsets of $\{1, \ldots, n\}$. It is known that for every $i \neq j$ we have $\left|A_{i} \cap A_{j}\right|<5$.
Prove that $\sum_{i=1}^{n}\left|A_{i}\right| \leq 100 n^{3 / 2}$.
Solution: Define a bipartite graph between the subsets A_{1}, \ldots, A_{n} on one side and the numbers $1,2, \ldots, n$ on the other side. Connect a set to all the elements that belong to it. Notice that the number of edges is precisely $\sum_{i=1}^{n}\left|A_{i}\right|$. Notice also that this bipartite graph does not contain $K_{2,5}$, where the 2 are on the subsets side and the 5 are on the numbers side.

By a problem from last week such a graph cannot contain more than $100 n^{3 / 2}$ edges. (Or, equivalently, one can adjust the proof of Kovari-Sos-Turan theorem to this case).
2. Prove that if a graph G on n vertices does not have any cycle of length smaller than or equal to $2 k$, then the number of edges in G is at most $10 n^{1+\frac{1}{k}}$.

Hint: This is much easier than the Bondy-Simonovich theorem. Assume that G has more than $10 n^{1+\frac{1}{k}}$ edges. We may assume that the degree of every vertex in G is at least half of the average degree, as we have seen in class. Start from any vertex x in G and consider its neighbors and their neighbors...
Solution: We follow the hint. Assume to the contrary that G has more than $10 n^{1+\frac{1}{k}}$ edges. Then the average degree of a vertex in G is more than $20 n^{1 / k}$.
Let G^{\prime} be a subgraph of G with average degree more than $20 n^{1 / k}$ and minimum degree of at least $10 n^{1 / k}$. Of course also G^{\prime} cannot contain
any cycle of length smaller than or equal to $2 k$. Take any vertex x of G^{\prime}. Consider its neighbors (at least $10 n^{1 / k}$ of them). Then their neighbors (at least $100 n^{2 / k}$ because they are all "new" vertices, or else we have a short cycle). Continue like this k steps. We get a set of $10^{k} n$ new vertices which is impossible.
3. Let G be a graph on n vertices $v_{1}, \ldots v_{n}$. Assume that for every i, the vertex v_{i} has at most 10 neighbors from among v_{1}, \ldots, v_{i-1} (but may have more neighbors in G). Prove that the chromatic number of G is at most 11 .

Solution: We assign the colors to v_{1}, \ldots, v_{n} sequentially. When we assign the color of v_{i} we just need it to be different from all the colors of its neighbors from among v_{1}, \ldots, v_{i-1}. But there are at most 10 such neighbors and we can use 11 colors. Hence there is a color that we can use for v_{i} and continue to v_{i+1}. This way every two neighboring vertices must get different colors. If v_{i} and v_{j} are neighbors and $i<j$ (without loss of generality), then when we assigned the color for v_{j} we made sure it is different for the color of v_{i}.
4. In how many ways can we color a cycle of length 5 in 10 colors such that no two neighboring vertices get the same color?
Solution: One way is to find the chromatic polynomial of C_{5}. We can directly do the calculation through the inclusion-exclusion formula:
Let A_{e} be the set of colorings where both vertices of the edge e of C_{5} get the same color (this is bad coloring). The answer is $10^{5}-\left|\cup_{e} A_{e}\right|$. The cardinality of the union is computed through inclusion-exclusion formula.
The answer is: $10^{5}-\sum_{a} 10^{4}+\sum_{a, b} 10^{3}-\sum_{a, b, c} 10^{2}+10^{1} . a, b, c$ represent edges in C_{5}. This is $10^{5}-10^{4}\binom{5}{1}+10^{3}\binom{5}{2}-10^{2}\binom{5}{3}+10$. The coefficient of 10^{1} is not $\binom{5}{4}$ because any choice of four edges from C_{5} is essentially the same and implies that the color of all vertices is the same.

