
Graph Theory 2023 (EPFL): Problem
set of week 7

November 7, 2023

1. Let A1, . . . , An be n subsets of {1, . . . , n}. It is known that for every
i ̸= j we have |Ai ∩ Aj| < 5.

Prove that
∑n

i=1 |Ai| ≤ 100n3/2.

Solution: Define a bipartite graph between the subsets A1, . . . , An on
one side and the numbers 1, 2, . . . , n on the other side. Connect a set
to all the elements that belong to it. Notice that the number of edges
is precisely

∑n
i=1 |Ai|. Notice also that this bipartite graph does not

contain K2,5, where the 2 are on the subsets side and the 5 are on the
numbers side.

By a problem from last week such a graph cannot contain more than
100n3/2 edges. (Or, equivalently, one can adjust the proof of Kovari-
Sos-Turan theorem to this case).

2. Prove that if a graph G on n vertices does not have any cycle of length
smaller than or equal to 2k, then the number of edges in G is at most
10n1+ 1

k .

Hint: This is much easier than the Bondy-Simonovich theorem. As-
sume that G has more than 10n1+ 1

k edges. We may assume that the
degree of every vertex in G is at least half of the average degree, as
we have seen in class. Start from any vertex x in G and consider its
neighbors and their neighbors...

Solution: We follow the hint. Assume to the contrary that G has more
than 10n1+ 1

k edges. Then the average degree of a vertex in G is more
than 20n1/k.

Let G′ be a subgraph of G with average degree more than 20n1/k and
minimum degree of at least 10n1/k. Of course also G′ cannot contain
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any cycle of length smaller than or equal to 2k. Take any vertex x
of G′. Consider its neighbors (at least 10n1/k of them). Then their
neighbors (at least 100n2/k because they are all ”new” vertices, or else
we have a short cycle). Continue like this k steps. We get a set of 10kn
new vertices which is impossible.

3. Let G be a graph on n vertices v1, . . . vn. Assume that for every i, the
vertex vi has at most 10 neighbors from among v1, . . . , vi−1 (but may
have more neighbors in G). Prove that the chromatic number of G is
at most 11.

Solution: We assign the colors to v1, . . . , vn sequentially. When we
assign the color of vi we just need it to be different from all the colors
of its neighbors from among v1, . . . , vi−1. But there are at most 10 such
neighbors and we can use 11 colors. Hence there is a color that we
can use for vi and continue to vi+1. This way every two neighboring
vertices must get different colors. If vi and vj are neighbors and i < j
(without loss of generality), then when we assigned the color for vj we
made sure it is different for the color of vi.

4. In how many ways can we color a cycle of length 5 in 10 colors such
that no two neighboring vertices get the same color?

Solution: One way is to find the chromatic polynomial of C5. We can
directly do the calculation through the inclusion-exclusion formula:

Let Ae be the set of colorings where both vertices of the edge e of C5

get the same color (this is bad coloring). The answer is 105 − | ∪e Ae|.
The cardinality of the union is computed through inclusion-exclusion
formula.

The answer is: 105−
∑

a 10
4+

∑
a,b 10

3−
∑

a,b,c 10
2+101. a, b, c represent

edges in C5. This is 10
5−104

(
5
1

)
+103

(
5
2

)
−102

(
5
3

)
+10. The coefficient

of 101 is not
(
5
4

)
because any choice of four edges from C5 is essentially

the same and implies that the color of all vertices is the same.
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