# Graph Theory 2023 (EPFL): Problem set of week 7 

November 1, 2023

1. Let $A_{1}, \ldots, A_{n}$ be $n$ subsets of $\{1, \ldots, n\}$. It is known that for every $i \neq j$ we have $\left|A_{i} \cap A_{j}\right|<5$.
Prove that $\sum_{i=1}^{n}\left|A_{i}\right| \leq 100 n^{3 / 2}$.
2. Prove that if a graph $G$ on $n$ vertices does not have any cycle of length smaller than or equal to $2 k$, then the number of edges in $G$ is at most $10 n^{1+\frac{1}{k}}$.

Hint: This is much easier than the Bondy-Simonovich theorem. Assume that $G$ has more than $10 n^{1+\frac{1}{k}}$ edges. We may assume that the degree of every vertex in $G$ is at least half of the average degree, as we have seen in class. Start from any vertex $x$ in $G$ and consider its neighbors, and their neighbors...
3. Let $G$ be a graph on $n$ vertices $v_{1}, \ldots v_{n}$. Assume that for every $i$, the vertex $v_{i}$ has at most 10 neighbors from among $v_{1}, \ldots, v_{i-1}$ (but may have more neighbors in $G$ ). Prove that the chromatic number of $G$ is at most 11.
4. In how many ways can we color a cycle of length 5 in 10 colors such that no two neighboring vertices get the same color?

