
Graph Theory 2023 (EPFL): Problem
set of week 3

October 9, 2023

1. Show that if d1, . . . , dn are n natural numbers such that
∑n

i=1 di =
2n−2, then there is a tree T whose set of degrees is precisely d1, . . . , dn.

Solution: For example, by induction on n. For n = 1 this is trivial.
For n = 2 we must have d1 = d2 = 1 and the tree on two vertices is an
(the only) example. Assume therefore that n > 2. For the induction
step, notice that we must have at least one (in fact at least two) d1
that is equal to 1 for otherwise

∑n
i=1 di ≥ 2n. We take out this d1 and

then we find some dj such that dj > 1. This is possible for otherwise∑n
i=1 di = n this is smaller than 2n − 2 if n > 2. We replace dj with

dj−1 and find a corresponding tree by the induction hypothesis. Then
we add one leaf to vj and get the desired tree on n vertices.

2. a) Let T be a tree and let e be an edge not in T . Show that if we add
e to T we get a graph with precisely one cycle.

Solution: We clearly get a cycle because we saw in class that every
graph on n vertices and more than n − 1 edges must have a cycle.
Assume to the contrary that there are two different cycles in T ∪ e.
Then it must be that e belongs to both cycles because there is no cycle
in T . We claim that after removing the edge e the remaining graph
(that is T ) must have a cycle. This is because in the remaining graph
there are at least two different paths between the two endpoints of e.

b) Show that if T is a tree and we add to T k red edges that are not
in T , then the resulting graph has at most 2k − 1 distinct cycles.

Hint: show that it is not possible that two different cycles use the same
set of red edges.
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Solution:It is enough to prove the hint. We prove by induction that
if two cycles use the same set of red edges, then there is a (different)
cycle containing only non-red edges. This of course will lead to a con-
tradiction because we know there is no such cycle in T . We prove our
claim by induction on the number of the non-red edges involved in both
cycles. If all the edges in the two cycles are red, then clearly there is
only one cycle possible. This is because if there is a cycle made of red
edges only, one cannot use the same set of edges to create a different
cycle.

Assume there are two different cycles using the same set of red edges. If
there is an edge that is not red and is common to both cycles, then color
it red and conclude by induction that there is a cycle in the remaining
set of non-red edges.

The set of red edges is just a union of disjoint paths. Color blue the
non-red edges of the first cycle and color green the non-red edges of
the second cycle. Start from an end of one red path and go along blues
edges until we get to another end of a red path. Then continue along
green edges until we get to another end of a red path, then continue
along blue edges until the next end of a red path. If we did not go back
to a vertex we already visited before, then we can continue. When we
stop we arrived at a vertex we visited before and we closed a cycle made
only of blue and green edges.

3. a) It is known that T is a tree with 10 vertices of degree 10 and all
other vertices are leaves. How many vertices does T have?

Solution: Let us denote the number of leaves of T by x. The number of
vertices of T is then 10 + x. Now the sum of the degrees of all vertices
in T is 100 + x which should be equal to 2(10 + x − 1). This gives
x = 82.

b) How many different trees on n labeled vertices are there such that
the degree of each vertex is either 3 or 1?

Solution: Let us denote by x the number of vertices of T of degree 3.
T has n− x vertices of degree 1 (the leaves). The sum of degrees of all
vertices in T is equal to 3x + (n − x). On the other hand this should
be equal to 2n− 2. This gives x = (n− 2)/2. In particular n has to be
even, or else there is no such tree.

We first choose the (n − 2)/2 vertices out of v1, . . . , vn that will serve
as those vertices with degree 3. This can be done in

(
n

(n−2)/2

)
ways.
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Then We need to construct a sequence of length n− 2 containing two
copies of each of these vertices that we chose. This can be done in (n−
2)!2−(n−2)/2 ways. Altogether the answer is:

(
n

(n−2)/2

)
(n− 2)!2−(n−2)/2.

4. Show that when n is even, then the complete graph Kn (that has (n−
1)n/2 edges) is a union of n/2 trees on the same set of vertices. In
other words: show that the set of edges of the complete graph Kn can
be partitioned into n/2 sets of n− 1 edges such that each set of n− 1
edges forms a tree on the set of vertices of Kn.

Hint: there is more than one way to do it. One way is induction.

Solution: By induction. We remove two vertices a and b of Kn. The
remaining graph Kn−2 is a union of n/2− 1 trees on the n− 2 vertices
of Kn−2. For each of the n/2 − 1 trees we add two edge connecting a
and b as leaves to two different vertices of the tree. We do it in such a
way that each one of the n− 2 vertices of Kn−2 will be chosen once in
some tree.

Then we construct an additional tree by taking the edge ab together
with all the edges that have not been used yet between a and b and the
rest of the n− 2 vertices. It never happens that we connect a vertex v
to both a and b because one of va or vb was used already in the first
n/2−1 trees. The constructed graph is indeed a tree where apart from
a and b all the other vertices are leaves.
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