Graph Theory 2023 (EPFL): Problem set of week 3

October 4, 2023

1. Show that if d_{1}, \ldots, d_{n} are n natural numbers such that $\sum_{i=1}^{n} d_{i}=$ $2 n-2$, then there is a tree T whose set of degrees is precisely d_{1}, \ldots, d_{n}.
2. a) Let T be a tree and let e be an edge not in T. Show that if we add e to T we get a graph with precisely one cycle.
b) Show that if T is a tree and we add to $T k$ red egdes that are not in T, then the resulting graph has at most $2^{k}-1$ distinct cycles.
Hint: show that it is not possible that two different cycles use the same set of red edges.
3. a) It is known that T is a tree with 10 vertices of degree 10 and all other vertices are leaves. How many vertices does T have?
b) How many different trees on n labeled vertices are there such that the degree of each vertex is either 3 or 1 ?
4. Show that when n is even, then the complete graph K_{n} (that has $(n-$ 1) $n / 2$ edges) is a union of $n / 2$ trees on the same set of vertices. In other words: show that the set of edges of the complete graph K_{n} can be partitioned into $n / 2$ sets of $n-1$ edges such that each set of $n-1$ edges forms a tree on the set of vertices of K_{n}.

Hint: there is more than one way to do it. One way is induction.

