Graph Theory 2023 (EPFL): Problem set of week 6

October 27, 2023

1. Let G be a bipartite graph $V(G)=A \cup B$ such that $|A|=n$ and $|B|=m$. Show that if G does not contain a cycle of length 4 , then the number of edges in G is at most $10 \mathrm{~nm}^{1 / 2}+10 \mathrm{~m}$.
Solution: We modify a little bit the proof given in class for general graphs.
We count the number of triples b, x, y such that $b \in B, x, y \in A$ and both x and y are neighbors of b.
On one hand this is precisely $\sum_{b \in B}\binom{d(b)}{2}$. On the other hand it is at most $\binom{n}{2}$.
We observe that $\binom{d(b)}{2} \geq(d(b)-1)^{2} / 2$. Let d_{1}, \ldots, d_{m} denote the degrees of the vertices in B. We get $\sum_{i=1}^{m}\left(d_{i}-1\right)^{2} / 2 \leq n^{2}$.
We use $\left(\sum_{i=1}^{m}\left(d_{i}-1\right)\right)^{2} \leq m \sum_{i=1}^{m}\left(d_{i}-1\right)^{2}$
We get $E=\sum_{i=1}^{m} d_{i} \leq(m+\sqrt{m} n)$.
2. Let H be a bipartite graph. Prove that there is $\epsilon>0$ such that $E x(H, n) \leq c_{k} n^{2-\epsilon}$. In other words, $E x(H, n)$ is subquadratic for every bi-partite graph H.

Solution: Write $V(H)=A \cup B$. Then in particular G cannot contain $K_{|A|,|B|}$ because the complete bipartite graph on $|A|$ and $|B|$ vertices will definitely contain a copy of H. From Kovari-Sos-Turan Theorem it now follows that the number of edges in G is at most $\mathrm{cn}^{2-\frac{1}{\min (|A|,|B|)}}$.
3. Prove that for every n nonnegative numbers a_{1}, \ldots, a_{n} we have $\frac{1}{n} \sum_{i=1}^{n} a_{i} \leq$ $\sqrt[k]{\frac{1}{n} \sum_{i=1}^{n} a_{i}^{k}}$.

Solution: There is more than one way to show this. It is not the easiest inequality but not the most difficult either.
We want to show that $\left(\sum a_{i}\right)^{k} \leq n^{k-1} \sum a_{i}^{k}$. Keeping the sum $\sum a_{i}$ fixed, $\sum a_{i}^{k}$ is minimized where all the a_{i} 's are equal. It is not difficult to see this. It is enough to prove this when $n=2$. In other words the function $x^{k}+(c-x)^{k}$ is minimized for $x=c / 2$. This is easily checked by looking at the derivative and equating it to 0 .
When all a_{i} 's are equal we get equality.
4. We have seen in class that if T is a tree with k vertices, then $\operatorname{Ex}(T, n) \leq$ $10 k^{2} n$. Improve on the dependency in k of this bound and show that $E x(T, n) \leq 10 k n$.

Hint: use the result we showed in class allowing to assume that the degree of every vertex is at least half of the average degree.

Solution: Assume G has more than $10 k n$ edges. Find a sub-graph G^{\prime} of G with average degree $20 k$ and minimum degree $10 k$. We claim that G^{\prime} contains a copy of every tree with k or less vertices. This is true for any tree with one vertex. Assume it is true for i we prove it for $i+1$. Let H be a tree with $i+1$ vertices. Remove a leaf v from H and obtain a tree H^{\prime} with i vertices. By induction hypothesis G^{\prime} contains a copy of H^{\prime}. The vertex y in this copy of H^{\prime} that is the neighbor of v in H has degree at least $10 k$ in G^{\prime}. We can therefore find a "free" edge going out from y in G^{\prime} to a new vertex not in the copy of H^{\prime} in G^{\prime}. We therefore found a copy of H in G^{\prime}.
5. Let G be a graph on n vertices that does not contains a cycle of length 5. We know already that G may have even $n^{2} / 4$ edges. Show that it cannot have more than $n^{2} / 4+100 n$ edges.
Solution: Let a be the vertex with largest degree in G and denote the set its neighbors by B. Then for every other vertex v not in B we delete all edges incident to v and connect v to every vertex in B. By doing this we only increase the number of edges in the graph.
We get a complete bipartite graph (that contains at most $n^{2} / 4$ many edges) plus some edges between vertices in B. Notice that the edges between vertices in B cannot create a path of length 3 because then we had a cycle of length five. This implies that the number of edges between vertices in B is at most $100 n$ (and in fact much less, why?). Altogether, G cannot have more than $n^{2} / 4+100 n$ edges.

