Graph Theory 2023 (EPFL): Problem set of week 6

October 26, 2023

1. Let G be a bi-partite graph $V(G)=A \cup B$ such that $|A|=n$ and $|B|=m$. Show that if G does not contain a cycle of length 4 , then the number of edges in G is at most $10 \mathrm{~nm}^{1 / 2}+10 \mathrm{~m}$.
2. Let H be a bipartite graph. Prove that there is $\epsilon>0$ such that $E x(H, n) \leq c_{k} n^{2-\epsilon}$. In other words, $E x(H, n)$ is subquadratic for every bi-partite graph H.
3. Prove that for every n nonnegative numbers a_{1}, \ldots, a_{n} we have

$$
\frac{1}{n} \sum_{i=1}^{n} a_{i} \leq \sqrt[k]{\frac{1}{n} \sum_{i=1}^{n} a_{i}^{k}}
$$

4. We have seen in class that if T is a tree with k vertices, then $\operatorname{Ex}(T, n) \leq$ $10 k^{2} n$. Improve on the depoendency in k of this bound and show that $E x(T, n) \leq 10 \mathrm{kn}$.

Hint: use the result we showed in class allowing to assume that the degree of every vertex is at least half of the average degree.
5. Let G be a graph on n vertices that does not contains a cycle of length 5. We know already that G may have even $n^{2} / 4$ edges. Show that it cannot have more than $n^{2} / 4+100 n$ edges.

