Graph Theory 2023 (EPFL): Problem set of week 5

October 20, 2023

1. Show that if G does not contain a cycle of even length, then no two cycles in G may share an edge.

Solution: Suppose c_{1} and c_{2} are two cycles (of odd length) in G that share at least one edge. If c_{1} and c_{2} have the same set of edges, then it is the same cycle. Therefore, there must be an edge say of c_{2} that is not an edge of c_{1}. Remove from c_{2} all the edges that are also in c_{1}. There is at least one such edge. What remains of c_{2} is a union of paths. Take one such path. This path P is between two vertices x and y of $c_{1} . x$ and y divide c_{1} into two paths one of which has even length and one has odd length. Both of this paths create a cycle together with P. One of the cycles will have even length and one will have odd length. This is a contradiction because we assume G does not contain an even cycle.
2. Let G be a graph on n vertices. Consider the matrix E as we defined in class where the rows correspond to the vertices and the columns to the edges. We make a small change and each column has two 1's at the entries that correspond to the vertices of the edge (rather than +1 and -1 as we had in class).

Show that the determinant of n columns of E is non-zero if and only if the corresponding n edges form a subgraph H of G that has precisely one cycle, necessarily of odd length, in each connected component of H.

Solution: Denote by M the matrix that is composed of the columns of E corresponding to the edges in H. If one of the connected components of H is a tree T say with k vertices, then M must be singular. This is because the rows corresponding to the vertices of T have non-zero
entries only in $k-1$ columns. This implies that the rank of the k rows corresponding to the vertices of T is at most $k-1$.

It now follows that every connected component of H must contain a cycle. Because H has n vertices and n edges, then it must be that every connected component of H has the same number of edges as vertices. As we have seen already, this implies that each connected component of H has precisely one cycle. If such a cycle has even length, then we claim that M is singular. This is because the vector v that has 0's in all the entries corresponding to vertices not in the cycle and has +1 and -1 alternatingly for vertices on the cycle satisfies $v M=0$. On the other hand if the cycle has odd length We claim that M is non-singular. There is more than one way to see this. For example: remove from M a column u that correspond to an edge e of the cycle. Then we know from the Matrix-Tree Theorem that the rank of the remaining matrix M^{\prime} is equal to $n-1$. Let v be the only vector such that $v M^{\prime}=0$. The values of every pair of coordinates of v that correspond to neighboring vertices in G must be negative of one another. If we consider the edges of the cycle minus the edge e we see that the two coordinates of v corresponding to the two vertices of e must have the same (non-zero, why?) value, because c has odd length. This means that $v M \neq 0$ and therefore, M is non-singular.
3. Let G be a graph with no cycle of even length. Show that G has at most $\frac{3}{2} n$ edges.

Solution: Denote by E the number of edges in such a graph G. By the previous problem, no two cycles in G share an edge. Because every cycle has length of at least 3 , it follows that the number of cycles in G is at most $E / 3$. If we remove one edge of each cycle in G we remain with a tree with $n-1$ edges. Therefore, $E-E / 3 \leq n-1$. It follows from here that $E \leq \frac{3}{2}(n-1)$.
4. Let n points be given on a circle of radius 1 in the plane. Show that at least $n^{2} / 10-\frac{3 n}{2}$ pairs of the given points are at distance smaller than 1.

Solution: Define a graph G where two points (vertices) are connected by an edge if their distance from each other is greater than 1 . It is easy to check that G does not contain K_{6}. Therefore, by Turan's Theorem, the number of edges in G is at most $\frac{n^{2}}{2}\left(1-\frac{1}{6-1}\right)=\frac{4}{5} \frac{n^{2}}{2}$. This means
that there are at least

$$
\binom{n}{2}-\frac{4}{5} \frac{n^{2}}{2} \geq n^{2} / 10-1 / 2 n
$$

edges in the complement of G. This means that at least $n^{2} / 10-1 / 2 n$ pairs of points are at distance smaller than or equal to 1 . We notice that the number of pairs points at distance exactly 1 is at most n. This is because every point is at distance 1 from at most two other points. It follows now that the number of pairs of points at distance smaller than 1 is at least $n^{2} / 10-3 / 2 n$.

