
Graph Theory 2023 (EPFL): Problem
set of week 5

October 20, 2023

1. Show that if G does not contain a cycle of even length, then no two
cycles in G may share an edge.

Solution: Suppose c1 and c2 are two cycles (of odd length) in G that
share at least one edge. If c1 and c2 have the same set of edges, then
it is the same cycle. Therefore, there must be an edge say of c2 that
is not an edge of c1. Remove from c2 all the edges that are also in c1.
There is at least one such edge. What remains of c2 is a union of paths.
Take one such path. This path P is between two vertices x and y of
c1. x and y divide c1 into two paths one of which has even length and
one has odd length. Both of this paths create a cycle together with P .
One of the cycles will have even length and one will have odd length.
This is a contradiction because we assume G does not contain an even
cycle.

2. Let G be a graph on n vertices. Consider the matrix E as we defined
in class where the rows correspond to the vertices and the columns to
the edges. We make a small change and each column has two 1’s at
the entries that correspond to the vertices of the edge (rather than +1
and −1 as we had in class).

Show that the determinant of n columns of E is non-zero if and only if
the corresponding n edges form a subgraph H of G that has precisely
one cycle, necessarily of odd length, in each connected component of
H.

Solution: Denote by M the matrix that is composed of the columns of
E corresponding to the edges in H. If one of the connected components
of H is a tree T say with k vertices, then M must be singular. This
is because the rows corresponding to the vertices of T have non-zero
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entries only in k− 1 columns. This implies that the rank of the k rows
corresponding to the vertices of T is at most k − 1.

It now follows that every connected component of H must contain a
cycle. Because H has n vertices and n edges, then it must be that every
connected component of H has the same number of edges as vertices.
As we have seen already, this implies that each connected component
of H has precisely one cycle. If such a cycle has even length, then we
claim that M is singular. This is because the vector v that has 0’s in
all the entries corresponding to vertices not in the cycle and has +1
and −1 alternatingly for vertices on the cycle satisfies vM = 0. On the
other hand if the cycle has odd length We claim that M is non-singular.
There is more than one way to see this. For example: remove from M
a column u that correspond to an edge e of the cycle. Then we know
from the Matrix-Tree Theorem that the rank of the remaining matrix
M ’ is equal to n− 1. Let v be the only vector such that vM ′ = 0. The
values of every pair of coordinates of v that correspond to neighboring
vertices in G must be negative of one another. If we consider the edges
of the cycle minus the edge e we see that the two coordinates of v
corresponding to the two vertices of e must have the same (non-zero,
why?) value, because c has odd length. This means that vM ̸= 0 and
therefore, M is non-singular.

3. Let G be a graph with no cycle of even length. Show that G has at
most 3

2
n edges.

Solution: Denote by E the number of edges in such a graph G. By
the previous problem, no two cycles in G share an edge. Because every
cycle has length of at least 3, it follows that the number of cycles in G
is at most E/3. If we remove one edge of each cycle in G we remain
with a tree with n − 1 edges. Therefore, E − E/3 ≤ n − 1. It follows
from here that E ≤ 3

2
(n− 1).

4. Let n points be given on a circle of radius 1 in the plane. Show that at
least n2/10− 3n

2
pairs of the given points are at distance smaller than

1.

Solution: Define a graph G where two points (vertices) are connected
by an edge if their distance from each other is greater than 1. It is easy
to check that G does not contain K6. Therefore, by Turan’s Theorem,
the number of edges in G is at most n2

2
(1 − 1

6−1
) = 4

5
n2

2
. This means
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that there are at least(
n

2

)
− 4

5

n2

2
≥ n2/10− 1/2n

edges in the complement of G. This means that at least n2/10− 1/2n
pairs of points are at distance smaller than or equal to 1. We notice
that the number of pairs points at distance exactly 1 is at most n. This
is because every point is at distance 1 from at most two other points.
It follows now that the number of pairs of points at distance smaller
than 1 is at least n2/10− 3/2n.
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