Integer Optimization Problem Set 7

Presentations: May 1

i) Consider a line-segment $\ell=\{d \lambda: \lambda \in[a, b]\} \subseteq \mathbb{Z}^{2}$ with $d \in \mathbb{Z}^{2} \backslash\{0\}$ and $a, b \in \mathbb{Q}$. Use extended the euclidean algorithm to decide $\ell \cap \mathbb{Z}^{2}=\varnothing$ in polynomial time in $\operatorname{size}(d)+\operatorname{size}(a)+\operatorname{size}(b)$.
ii) Consider the problem of deciding $K \cap \mathbb{Z}^{n}=\varnothing$ for a convex body $K \subseteq \mathbb{R}^{n}$ and let $a \in \mathbb{Z}^{n}$ and $\beta \in \mathbb{Z}$. Show that the problem

$$
K \cap\left\{x \in \mathbb{R}^{n}: a^{T} x=\beta\right\} \cap \mathbb{Z}^{n}=\varnothing ?
$$

can be understood as a problem $K^{\prime} \cap \mathbb{Z}^{n-1}=\varnothing$ for some convex body $K^{\prime} \subseteq \mathbb{R}^{n-1}$. If K is a polytope $K=\left\{x \in \mathbb{R}^{n}: A x \leqslant b\right\}$ for some $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, what is a description of the polytope K^{\prime} ?
iii) Let a_{1}, \ldots, a_{n} be a basis of the lattice $\Lambda \subseteq \mathbb{R}^{n}$, then

$$
\mu(\Lambda) \leqslant \frac{1}{2} \sum_{i=1}^{n}\left\|a_{i}\right\|_{2}
$$

iv) Let a_{1}, \ldots, a_{n} be a basis of the lattice $\Lambda \subseteq \mathbb{R}^{n}$. Let $\Lambda^{\prime}=\{\pi(\nu): v \in \Lambda\}$, where $\pi(x)=x-\left\langle x, a_{1}\right\rangle\left\langle a_{1}, a_{1}\right\rangle a_{1}$ is the projection of x into the orthogonal complement of a_{1}.
Show that Λ^{\prime} is a $n-1$-dimensional lattice (in the hyperplane $a_{1}^{T} x=0$). What is $\operatorname{det}\left(\Lambda^{\prime}\right)$?
v) Let $\Lambda(A) \subseteq \mathbb{R}^{n}$ be a lattice, where $A \in \mathbb{R}^{n \times n}$ is non-singular. Define the set $\Lambda^{*}=\left\{y \in \mathbb{R}^{n}: y^{T} v \in\right.$ \mathbb{Z} for each $v \in \Lambda\}$. Show that Λ^{*} is a lattice. Determine a basis of Λ^{*}. What is $\operatorname{det}\left(\Lambda^{*}\right)$?
Λ^{*} is called the dual lattice of Λ.

