Discrete Optimization 2023 (EPFL): Problem set of week 9

May 30, 2023

Reminder: The min-max theorem for zero-sum games with mixed strategies says that for every $m \times n$ matrix A we have

$$
\min _{x} \max _{y} y^{T} A x=\max _{y} \min _{x} y^{T} A x
$$

where the minimum is over all $y=\left(y_{1}, \ldots, y_{m}\right) \geq 0$ such that $\sum y_{i}=1$. The maximum is over all $x=\left(x_{1}, \ldots, x_{n}\right) \geq 0$ such that $\sum x_{i}=1$.

1. Let A be an $m \times n$ matrix. Assume that there is an entry in A that is the minimum in its row and the maximum in its column. Prove that this entry is the value of the zero-sum game with for two players with mixed strategies.
Solution: Let the value of that entry be equal to M and assume it is in the i th row and j th columns.
Consider the case in which the row-player (player R) choose $y=$ $(0, \cdots, 1, \cdots, 0)^{T}=e_{i}$, the i th unit vector in \mathbb{R}^{m}. Then no matter what the column player (player C) chooses, the value of the game will be at least M, since

$$
\max _{y} \min _{x} y^{T} A x \geq \min _{x} e_{i}^{T} A x=\min _{x} a_{i} x=M
$$

where a_{i} is the i th row of A, and the minimum is reached by taking x to be the j th unit vector in \mathbb{R}^{n}.
Consider the case in which the column-player(player C) choose $x=$ $(0, \cdots, 1, \cdots, 0)^{T}=e_{j}$, the j th unit vector in \mathbb{R}^{n}. Then no matter what player R chooses, the value of the game will be at most M, since

$$
\min _{x} \max _{y} y^{T} A x \leq \max _{y} y^{T} A e_{j}=\max _{y} y^{T} a_{j}^{\prime}=M
$$

where a_{j}^{\prime} is the j th column of A, and the minimum is reached by taking y to be the i th unit vector in \mathbb{R}^{m}.

We are done because the min-max theorem gives

$$
\min _{x} \max _{y} y^{T} A x=\max _{y} \min _{x} y^{T} A x
$$

2. Prove the min-max theorem directly for matrices of the form

$$
A=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

Solution: Consider first $\max _{x} \min _{y} y A x$. Fixing $x=\left(x_{1}, x_{2}\right)$, we have $\min _{y} y A x=\min _{y} y_{1}\left(a x_{1}+b x_{2}\right)+y_{2}\left(a x_{2}+b x_{1}\right)$. This is just equal to $\min \left(a x_{1}+b x_{2}, a x_{2}+b x_{1}\right)$.
We claim that if we wish to maximize this over all $x=\left(x_{1}, x_{2}\right)$, then the maximum must be when $a x_{1}+b x_{2}=a x_{2}+b x_{1}$ because if this is not the case we can move weight from x_{1} to x_{2} (or vice versa) and make the two expressions $a x_{1}+b x_{2}$ and $a x_{2}+b x_{1}$ closer to each other and their minimum increases (because their sum is constant $a+b$). Therefore, $\max _{x} \min _{y} y A x$ is attained when $a x_{1}+b x_{2}=a x_{2}+b x_{1}$ or equivalently $x_{1}=x_{2}=\frac{1}{2}$. Then $y A x=\frac{a+b}{2}$.
A similar argument shows that $\min _{x} \max _{y} y A x$ has the same value.
3. Find the min-max value for the diagonal matrix with $\lambda_{1}, \ldots, \lambda_{n}$ on the main diagonal.

Solution: If $\lambda_{i} \geq 0$ and $\lambda_{j} \leq 0$ (possibly $i=j$), then the min-max value is equal to 0 . This is because we can apply Problem 1 on the entry $a_{i j}=0$ that is the largest in its column and smallest in its row.
Therefore, assume $\lambda_{1}, \ldots, \lambda_{n}>0$.
Then $y A x=\sum x_{i} y_{i} \lambda_{i}$. Fixing y we have $\max _{x} \sum x_{i} y_{i} \lambda_{i}$ is when $x_{i}=1$ for the i such that $y_{i} \lambda_{i}$ is maximum.
Then $\max _{x} y A x=\max _{i} y_{i} \lambda_{i}$. Therefore, if we want to find $\min _{y} \max _{x} y A x$, we better have y such that $\max _{i} y_{i} \lambda_{i}$ is minimum. Similar to what we did on Problem 2, this happens when all the $y_{i} \lambda_{i}$ are equal. Then $y_{i}=\frac{1}{\lambda_{i}}$ times a constant that does not depend on i. Because $\sum y_{i}=1$, then we must have

$$
y_{i}=\frac{1}{\sum \frac{1}{\lambda_{j}}} \frac{1}{\lambda_{i}} .
$$

Then the value of the min-max is $\frac{1}{\sum \frac{1}{\lambda_{j}}}$

What if the λ_{i} 's are all negative? In this case notice that we have (we use the fact that $\min f=-\max (-f))$

$$
\begin{aligned}
\frac{1}{\sum \frac{1}{\lambda_{j}}} & =-\min _{y} \max _{x} y(-A) x \\
& =-\min _{y} \max _{x}-y A x \\
& =-\min _{y}\left(-\min _{x} y A x\right) \\
& =\max _{y} \min _{x} y A x \\
& =\max _{y} \min _{x} x A y \\
& =\min _{x} \max _{y} x A y \\
& =\min _{y} \max _{x} y A x
\end{aligned}
$$

4. Show that in a zero-sum game with a matrix A with mixed strategies the following is true: If one player knows the mixed strategy of the other player, then the best response (strategy) for him is a pure strategy. That is, the best response is choosing just one row or column.
Solution: Assume for example that the Column player knows the strategy y_{0} of the Row player. Then the Column player wants to maximize $\max _{x} y_{0} A x$ subject to $\sum x_{i}=1$ and $x \geq 0$. However, this is a linear program. The simplex algorithm will find a vertex of the polyhedron $\sum x_{i}=1$ and $x \geq 0$. The vertices of this polyhedron are the n vectors that have all their coordinates equal to 0 except one coordinate that is equal to 1 .
