Discrete Optimization 2023 (EPFL): Problem set of week 13

May 30, 2023

1. Consider the polyhedron P defined by $A x \leq b$ for

$$
A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
2 & 0 & 1 \\
-1 & 1 & -2 \\
3 & 1 & -1 \\
2 & 2 & 1
\end{array}\right)
$$

and $b=(1,2,3,4,5)$.
Find a hyperplane (weakly) separating P and $x=(1,2,3)$.
Solution: Calculating $A x$ we find $A x=(13,5,-2,2,9)$. We see that $A x$ does not satisfy $A x \leq b$ because of the first, second, and fifth coordinates.

We can therefore take any of the first, second, or fifth constraints and each of them will separate x from P. For example we can take the hyperplane $H=\{2 x+2 y+z=5\}$.
2. Find the volume of the cross polytope, the polytope with the $2 n$ vertices in \mathbb{R}^{n} that are $\pm e_{1}, \ldots, \pm e_{n}$.
Solution: The answer is $\frac{2^{n}}{n!}$. The reason is that the cross-polytope is the disjoint union of 2^{n} pyramids generated by the origin and $\pm e_{1}, \ldots, \pm e_{n}$. Their volume is each $\frac{1}{n!}$.
3. Let P be the tetrahedron with $n+1$ integer vertices in \mathbb{R}^{n}. Assume that P contains an integer interior point. Prove that the volume of P is at least $\frac{n+1}{n!}$.

Solution: We consider each of the $n+1$ simplices generated by the interior point and one of the $(n-1)$-dimensional faces of the tetrahedron. The volume of each one is at least $\frac{1}{n!}$ since the vertices of P are integer. These $n+1$ simplices are disjoint.
4. Let T be an integral non-singular linear transformation. Assume that the entries in the matrix representing T are at most D in absolute value. By how much can T shrink the size of a vector at most? That is, how small can $\frac{|T x|}{|x|}$ be?
Solution: If T is a non-singular linear transformation represented by a matrix whose entries are all smaller than D, then T cannot increase the size of a vector by more than a factor that is larger than $n D$. Let $A=T^{-1}$. Then $\frac{|T x|}{|x|} \leq \frac{|T x|_{\infty}}{|x|_{\infty}}$ for any norm $|\cdot|$. Now $\frac{|T x|}{|x|} \leq \frac{|T x|_{\infty}}{|x|_{\infty}} \leq$ $\frac{n \Delta|x|_{\infty}}{|x|_{\infty}}$ where Δ is the maximum entry of A. Then it follows that $\frac{|T x|}{|x|}=\frac{|T x|}{T^{-1} T|x|}=\frac{y}{T^{-1} y}$ for $y=T x$. Therefore, $\frac{|T x|}{|x|}=\frac{y}{T^{-1} y} \geq \frac{1}{\Delta n}$. Now we want to determine Δ. By Hadamard's inequality, $T_{i j}^{-1}=\frac{\operatorname{Det}_{i j}}{\operatorname{Det}(T)} \geq$ $(n-1)!D^{n-1}$ since each of the entries of T is upper bounded by D. Thus, $\frac{|T x|}{|x|} \geq \frac{1}{n!D^{n-1}}$.

