Discrete Optimization 2023 (EPFL): Problem set of week 10

May 5, 2023

1. Let A be a matrix where every row looks like $(0, \ldots, 0,1, \ldots, 1,0, \ldots, 0)$, or $(1, \ldots, 1,0, \ldots, 0)$, or $(0, \ldots, 0,1, \ldots, 1)$, or $(1, \ldots, 1)$. That is, all the 1's appear in one interval. Show that every $k \times k$ submatrix of A has determinant 0,1 , or -1 (in other words, A is totally unimodular).
2. Let A be a matrix where each column of A contains only 0 's except for one coordinate that is equal to 1 and another coordinate that is equal to -1 . Show that every $k \times k$ submatrix of A has determinant 0,1 , or -1 (in other words, A is totally unimodular).
3. Let ℓ be a line through the origin O (could be any other integer point as well). Let $\epsilon>0$ be any positive number and consider the cylinder S that consists of all points at distance at most ϵ from ℓ. Show that S must contain infinitely many integer points.
4. Let K be the cone generated by n linearly independent vectors in \mathbb{R}^{n}. Show that K must contain infinitely many integer points.
5. Give an example for a linear program with no maximum (in other words, unbounded linear program) such that the corresponding integer program is not unbounded.
