Integer Optimization Problem Set 9

Presentations: May 15

i) Let $B \in \mathbb{R}^{n \times n}$ be a non-singular lattice. The orthogonality defect of B is $\gamma=\prod_{i-1}^{n}\left\|b_{i}\right\| /|\operatorname{det}(B)|$, where b_{i} is the i-th column of B.
Show that the orthogonality defect of an LLL-reduced lattice basis B is bounded by $2^{n^{2} / 2}$.
ii) Show how to retrieve a shortest nonzero vector of a lattice $\Lambda(B) \subseteq \mathbb{R}^{n}$ in time $(2 \gamma+1)^{n}$, where γ is the orthogonality defect of B. Conclude that the shortest vector problem for a lattice Λ spanned by $B \in \mathbb{Z}^{n \times n}$ can be solved in time $2^{O\left(n^{3}\right)}$ times a polynomial in the size of B.
iii) Let $\Lambda \subseteq \mathbb{R}^{n}$ be a lattice. The Voronoi cell of Λ is the set of points

$$
\mathscr{V}(\Lambda)=\left\{x \in \mathbb{R}^{n}: \forall v \in \Lambda:\|x\| \leqslant\|x-v\|\right\}
$$

Show that $\mathscr{V}(\Lambda)$ is a polytope.
iv) Let $\Lambda \subseteq \mathbb{R}^{n}$ be a lattice. Show that the number of lattice points of euclidean norm bounded by R is at most

$$
\left(\frac{R+\rho(\Lambda)}{\rho(\Lambda)}\right)^{n}
$$

v) Show that $\mathscr{V}(\Lambda)$ can be described by $2^{O(n)}$ inequalities.

Hint: Consider parities (mod 2).
vi) Use Minkowski's theorem to show the following result of Dirichlet:

Let $Q \geqslant 1$ be a real number and let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$. There exists an integer q and integers p_{1}, \ldots, p_{n} with
a) $1 \leqslant q \leqslant Q^{n}$ and
b) $\left|q \cdot \alpha_{i}-p_{i}\right| \leqslant 1 / Q$ for $i=1, \ldots, n$.

