Integer Optimization Problem Set 9

Presentations: May 15

i) Let $B \in \mathbb{R}^{n \times n}$ be a non-singular lattice. The *orthogonality defect* of *B* is $\gamma = \prod_{i=1}^{n} ||b_i||/|\det(B)|$, where b_i is the *i*-th column of *B*.

Show that the orthogonality defect of an LLL-reduced lattice basis *B* is bounded by $2^{n^2/2}$.

- ii) Show how to retrieve a shortest nonzero vector of a lattice $\Lambda(B) \subseteq \mathbb{R}^n$ in time $(2\gamma + 1)^n$, where γ is the orthogonality defect of *B*. Conclude that the shortest vector problem for a lattice Λ spanned by $B \in \mathbb{Z}^{n \times n}$ can be solved in time $2^{O(n^3)}$ times a polynomial in the size of *B*.
- iii) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice. The *Voronoi cell* of Λ is the set of points

$$\mathscr{V}(\Lambda) = \{ x \in \mathbb{R}^n \colon \forall v \in \Lambda \colon \|x\| \leq \|x - v\| \}.$$

Show that $\mathscr{V}(\Lambda)$ is a polytope.

iv) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice. Show that the number of lattice points of euclidean norm bounded by *R* is at most

$$\left(\frac{R+\rho(\Lambda)}{\rho(\Lambda)}\right)^n$$

v) Show that $\mathscr{V}(\Lambda)$ can be described by $2^{O(n)}$ inequalities.

Hint: Consider parities (mod 2).

vi) Use Minkowski's theorem to show the following result of Dirichlet:

Let $Q \ge 1$ be a real number and let $\alpha_1, ..., \alpha_n \in \mathbb{R}$. There exists an integer q and integers $p_1, ..., p_n$ with

- a) $1 \leq q \leq Q^n$ and
- b) $|q \cdot \alpha_i p_i| \leq 1/Q$ for $i = 1, \dots, n$.