Integer Optimization Problem Set 8

Presentations: May 8

i) Let $\Lambda \subseteq \mathbb{R}^n$ a full rank lattice with basis $b_1, ..., b_n$. A non-zero lattice vector v is said to be primitive if v is not a multiple of any other lattice vector, i.e. $v \neq kw$ for any $w \in \Lambda$ and any $k \in \mathbb{N}_{\geq 2}$. Show that any primitive lattice vector v can be extended to a basis of Λ , i.e. there are lattice vectors $\tilde{b}_2, ..., \tilde{b}_n$ so that $v, \tilde{b}_2, ..., \tilde{b}_n$ is a basis of Λ .

Hint: This is a question about unimodular matrices. Write $v = \alpha_1 b_1 + ... + \alpha_n b_n$. Using the Euclidean algorithm, show that there exists a unimodular matrix $U \in \mathbb{Z}^{n \times n}$ such that $(\alpha_1, \text{uu}, \alpha_n) \cdot U = (1, 0, ..., 0)$. Observe each operation of the Euclidean algorithm only adds / subtracts multiples of some number to / from another number - in the matrix world, this operations corresponds to a unimodular matrix. It may be useful to show that $gcd(\alpha_1, ..., \alpha_n) = 1$. Finally, argue that the columns of the matrix $(b_1, b_2, ..., b_n) \cdot U^{-T}$ form a basis of Λ and its first column is v.

ii) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice and $v \in \Lambda \setminus \{0\}$ be a shortest vector w.r.t. the ℓ_2 -norm. For $x \in \mathbb{R}^n$ we let

 $\pi(x) = x - (x^T v / v^T v) v$

be the projection of *x* and we define $\Lambda_1 = \pi(\Lambda)$ as well as $\Lambda_1^* = \{y \in \mathbb{R}^n : y \perp v, \forall x \in \Lambda_1 : y^T x \in \mathbb{Z}\}$. Prove or provide a counterexample to the following:

 $\Lambda_1^*=\pi(\Lambda^*).$

This is Edwin's question!

- iii) Let $\Lambda \subseteq \mathbb{R}^n$ be a full rank lattice. Assume $b_1, ..., b_n \in \Lambda$ are linearly independent and that minimize $|det(b_1, ..., b_n)|$ over all n linearly independent lattice vectors. Prove that $b_1, ..., b_n$ is a basis of Λ .
- iv) Let $B \in \mathbb{Q}^{n \times n}$ be a lattice basis that consists of pairwise orthogonal vectors. Prove that the shortest vector of $\Lambda(B)$ is the shortest column vector of B.
- v) Let $\Lambda \subset \mathbb{R}^n$ be a lattice. Recall that the dual lattice Λ^* is defined by $\Lambda^* = \{y \in \mathbb{R}^n : y^T v \in \mathbb{Z} \quad \forall v \in \Lambda\}$. Let $x \in \mathbb{R}^d$ a vector. Prove that for every $v \in \Lambda^* \setminus \{0\}$ we have that

$$\frac{\{\langle v, x \rangle\}}{\|v\|} \le dist(x, \Lambda)$$

where $\{r\} := |[r] - r|$ is defined to be the distance from *r* to the closest integer.