Discrete Optimization 2023 (EPFL): Problem set of week 13

May 29, 2023

1. Consider the polyhedron P defined by $A x \leq b$ for

$$
A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
2 & 0 & 1 \\
-1 & 1 & -2 \\
3 & 1 & -1 \\
2 & 2 & 1
\end{array}\right)
$$

and $b=(1,2,3,4,5)$.
Find a hyperplane separating P and $x=(1,2,3)$.
2. Find the volume of the cross polytope, the polytope with the $2 n$ vertices in \mathbb{R}^{n} that are $\pm e_{1}, \ldots, \pm e_{n}$.
3. Let P be a tetrahedron with $n+1$ integer vertices in \mathbb{R}^{n}. Assume that P contains an integer interior point. Prove that the volume of P is at least $\frac{n+1}{n!}$.
4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a non-singular linear transformation. Assume that the entries in the matrix representation of T are all integers, and are at most D in absolute value. By how much can T shrink the size of a vector at most? That is, how small can $\frac{\|T x\|_{\infty}}{\|x\|_{\infty}}$ be?
Hint: Find an upper bound of absolute value of the entries of T^{-1}. You may want to use Hadamard's inequality.

