Integer Optimization Problem Set 6

Working session: April 17, Presentations: April 24

Let $\Lambda \subseteq \mathbb{R}^2$ be a lattice and $b_1, b_2 \in \Lambda \setminus \{0\}$ be a basis of Λ , ordered such that $||b_1||_2 \leq ||b_2||_2$.

- i) Show that $b_1, b_2 xb_1, x \in \mathbb{Z}$ is also a basis of Λ .
- ii) Let $b_2^* = b_2 \mu b_1$ with $\mu = \langle b_2, b_1 \rangle / \langle b_1, b_1 \rangle$ be the *projection* of b_2 into the *orthogonal complement* of b_1 .

Prove that, if $|\mu| > 1/2$, then $b_2 - \lfloor \mu \rfloor \cdot b_1$ is strictly shorter than b_2 , w.r.t. $\|\cdot\|_2$. Here $\lfloor \mu \rceil$ is the closest integer to μ .

- iii) If $b_2 \lfloor \mu \rfloor \cdot b_1$ is still longer than b_1 , then the enclosed angle between these vectors is between 60° and 120°.
- iv) Show that the following algorithm terminates in $O(\log(||b_2||) \text{ many steps: While } ||b_2^*|| \leq \frac{1}{4} ||b_1||$: Replace b_2 by $b_2 - \lfloor \mu \rfloor \cdot b_1$. Swap b_1 and b_2 .

Hint: $b_2 - \lfloor \mu \rfloor \cdot b_1$ *is much shorter than* b_2 .

v) We call b_1, b_2 partially reduced if $||b_2|| \ge ||b_2||$ and $||b_2^*|| \ge \frac{1}{4} ||b_1||$ holds. Show how to compute a shortest nonzero lattice vector in constant time, given a partially reduced basis.

Hint: The length of $xb_1 + yb_2$ is at least $|y| ||b_2^*|| \ge |y|||b_2||/4$.

For a lattice $\Lambda \subseteq \mathbb{R}^n$ and $i \in \{1, ..., n\}$ the number $\lambda_i(\Lambda)$ is defined as the minimum $R \ge 0$ such that the ball or radius R around 0, $B(0, R) = \{x \in \mathbb{R}^n : ||x|| \le R\}$ contains *i linearly independent* lattice points.

vi) Show that each lattice $\Lambda \subseteq \mathbb{R}^2$ has a basis v_1, v_2 such that $||v_i|| = \lambda_i(\Lambda)$, i = 1, 2 holds.

Hint: Use the first problems above. This answers the question of Samuel asked in class.

vii) Consider the lattice $\Lambda = \{Ax : x \in \mathbb{Z}^5\}$ with *A* being the matrix

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Show that the vectors $2 \cdot e_i$ i = 1, ..., 5 are attaining the successive minima but do not form a basis of Λ .

viii) Provide an example of a 2-dimensional lattice $\Lambda(b_1, b_2) \subseteq \mathbb{R}^2$ with $b_1, b_2 \in \mathbb{R}^2$ linearly independent, such that the projection of Λ onto the line generated by b_1 is not a (one-dimensional) lattice. Recall that the projection of v onto the line generated by b_1 is the vector

$$\frac{\langle v, b_1 \rangle}{\langle b_1, b_1 \rangle} b_1$$

Finally we repeat some basics from Linear Algebra 2. Recall that an integer matrix $U \in \mathbb{Z}^{n \times n}$ is called *unimodular* if det(U) = ±1 holds.

ix) Let $B \in \mathbb{R}^{n \times n}$ be non-singular and linearly independent and $C \in \mathbb{R}^{n \times n}$. One has $\Lambda(B) = \Lambda(C)$ if and only if there exists a unimodular matrix $U \in \mathbb{Z}^{n \times n}$ with $B \cdot U = C$.

Consequently, the absolute value of the determinant of any basis of a lattice Λ is an invariant of the lattice, called the *lattice determinant*, det(Λ).