Integer Optimization Problem Set 6

Working session: April 17, Presentations: April 24

Let $\Lambda \subseteq \mathbb{R}^{2}$ be a lattice and $b_{1}, b_{2} \in \Lambda \backslash\{0\}$ be a basis of Λ, ordered such that $\left\|b_{1}\right\|_{2} \leqslant\left\|b_{2}\right\|_{2}$.
i) Show that $b_{1}, b_{2}-x b_{1}, x \in \mathbb{Z}$ is also a basis of Λ.
ii) Let $b_{2}^{*}=b_{2}-\mu b_{1}$ with $\mu=\left\langle b_{2}, b_{1}\right\rangle /\left\langle b_{1}, b_{1}\right\rangle$ be the projection of b_{2} into the orthogonal complement of b_{1}.

Prove that, if $|\mu|>1 / 2$, then $b_{2}-\lfloor\mu\rceil \cdot b_{1}$ is strictly shorter than b_{2}, w.r.t. $\|\cdot\|_{2}$. Here $\left.L \mu\right\rceil$ is the closest integer to μ.
iii) If $b_{2}-\lfloor\mu\rceil \cdot b_{1}$ is still longer than b_{1}, then the enclosed angle between these vectors is between 60° and 120°.
iv) Show that the following algorithm terminates in $O\left(\log \left(\left\|b_{2}\right\|\right)\right.$ many steps: While $\left\|b_{2}^{*}\right\| \leqslant \frac{1}{4}\left\|b_{1}\right\|$: Replace b_{2} by $b_{2}-\lfloor\mu\rceil \cdot b_{1}$. Swap b_{1} and b_{2}.

Hint: $b_{2}-\lfloor\mu\rceil \cdot b_{1}$ is much shorter than b_{2}.
v) We call b_{1}, b_{2} partially reduced if $\left\|b_{2}\right\| \geqslant\left\|b_{2}\right\|$ and $\left\|b_{2}^{*}\right\| \geqslant \frac{1}{4}\left\|b_{1}\right\|$ holds. Show how to compute a shortest nonzero lattice vector in constant time, given a partially reduced basis.

Hint: The length of $x b_{1}+y b_{2}$ is at least $|y|\left\|b_{2}^{*}\right\| \geqslant|y|\left\|b_{2}\right\| / 4$.
For a lattice $\Lambda \subseteq \mathbb{R}^{n}$ and $i \in\{1, \ldots, n\}$ the number $\lambda_{i}(\Lambda)$ is defined as the minimum $R \geqslant 0$ such that the ball or radius R around $0, B(0, R)=\left\{x \in \mathbb{R}^{n}:\|x\| \leqslant R\right\}$ contains i linearly independent lattice points.
vi) Show that each lattice $\Lambda \subseteq \mathbb{R}^{2}$ has a basis v_{1}, v_{2} such that $\left\|v_{i}\right\|=\lambda_{i}(\Lambda), i=1,2$ holds.

Hint: Use the first problems above. This answers the question of Samuel asked in class.
vii) Consider the lattice $\Lambda=\left\{A x: x \in \mathbb{Z}^{5}\right\}$ with A being the matrix

$$
A=\left(\begin{array}{lllll}
2 & 0 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Show that the vectors $2 \cdot e_{i} i=1, \ldots, 5$ are attaining the successive minima but do not form a basis of Λ.
viii) Provide an example of a 2-dimensional lattice $\Lambda\left(b_{1}, b_{2}\right) \subseteq \mathbb{R}^{2}$ with $b_{1}, b_{2} \in \mathbb{R}^{2}$ linearly independent, such that the projection of Λ onto the line generated by b_{1} is not a (one-dimensional) lattice. Recall that the projection of v onto the line generated by b_{1} is the vector

$$
\frac{\left\langle v, b_{1}\right\rangle}{\left\langle b_{1}, b_{1}\right\rangle} b_{1}
$$

Finally we repeat some basics from Linear Algebra 2. Recall that an integer matrix $U \in \mathbb{Z}^{n \times n}$ is called unimodular if $\operatorname{det}(U)= \pm 1$ holds.
ix) Let $B \in \mathbb{R}^{n \times n}$ be non-singular and linearly independent and $C \in \mathbb{R}^{n \times n}$. One has $\Lambda(B)=\Lambda(C)$ if and only if there exists a unimodular matrix $U \in \mathbb{Z}^{n \times n}$ with $B \cdot U=C$.

Consequently, the absolute value of the determinant of any basis of a lattice Λ is an invariant of the lattice, called the lattice determinant, $\operatorname{det}(\Lambda)$.

