Discrete Optimization 2023 (EPFL): Problem set of week 5

April 25, 2023

1. Consider the simplex (tetrahedron) P in \mathbb{R}^{3} whose vertices are $(1,0,0)$, $(-1,1,0),(-1,-1,0)$, and $(0,0,1)$. Find all the vectors \vec{c} such that the maximum of $\langle\vec{c}, \vec{x}\rangle$ on P is at the vertex $(0,0,1)$.
Solution. One possible solution is direct: write $\vec{c}=(x, y, z)$. We know that the maximum is always obtained at a vertex. Therefore, we need that $z \geq x, z \geq y-x$, and $z \geq-x-y$. From the last two inequalities we get $2 z \geq-2 x$. Now together with the first inequality this implies $z \geq 0$. If $z=0$, then necessarily $x=0$ and $y=0$. We get the vector $(0,0,0)$. This is a "trivial" solution. If $z>0$ we may assume that it is equal to 1 . This is because for any solution \vec{c} also a positive multiple of it will work. We now get $y-x \leq 1$ and $-x-y \leq 1$. This gives $x \geq-1$. For every $x \geq-1$ we need $-(1+x) \leq y \leq 1+x$ Therefore, the solution are all the positive multiples of $(x, y, 1)$ where $x \geq-1$ and $-(1+x) \leq y \leq 1+x$.
A more generic solution is to find the three vectors that are orthogonal to the three hyper-planes meeting at $(0,0,1)$ and pointing outside of P. Denoting these vectors by v_{1}, v_{2}, and v_{3}, there are b_{1}, b_{2}, b_{3} such that every point x in P satisfies $\left\langle\vec{x}, v_{i}\right\rangle \leq b_{i}$ for $i=1.2 .3$. Denote by H_{i} the hyper-plane $\left\langle\vec{x}, v_{i}\right\rangle=b_{i}$
Any vector c can be written in one way as $\vec{c}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}$. If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are nonnegative, then \vec{c} will work for us because $(0,0,1)$ has the maximal scalar product with each of v_{1}, v_{2}, and v_{3}. If one of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is negative, say $\alpha_{1}<0$, then \vec{c} is not a solution because by moving from $(0,0,1)$ in a direction that is "away from" (makes an obtuse angle with) v_{1} along the intersection of H_{2} and H_{3}, will increase the scalar product with \vec{c}.

The solution is therefore, any positive linear combination of v_{1}, v_{2}, and v_{3}.
2. Let S be the set of all 2^{n} vectors with coordinates that are equal either to +1 or -1 . Let P be the set of all linear combinations of the vectors in S with coefficients greater than or equal to 0 and smaller than or equal to 1 . Show that P is convex and find at least 3 distinct vertices of P.

Solution: To show that P is convex, denote the vectors in S by v_{1}, \ldots, v_{m}, where $m=2^{n}$. Consider two points in P, namely $A=$ $\sum_{i=1}^{m} \alpha_{i} v_{i}$ and $B=\sum_{i=1}^{m} \beta_{i} v_{i}$, where $0 \leq \alpha_{i}, \beta_{i} \leq 1$ for every i. Now take $0 \leq \lambda \leq 1$ and notice that

$$
\lambda A+(1-\lambda) B=\sum_{i=1}^{m}\left(\lambda \alpha_{i}+(1-\lambda) \beta_{i}\right) v_{i} .
$$

Observe that $0 \leq \lambda \alpha_{i}+(1-\lambda) \beta_{i} \leq 1$ for every i. Therefore, $\lambda A+(1-$ $\lambda) B$ is also in P and consequently, P is convex.
There is an easy generic way to find vertices in P. Let \vec{c} be any vector that is not orthogonal to any vector in S (any random vector will do, but one can take for example the vector $\vec{c}=\left(1,10,10^{2}, \ldots, 10^{m}\right)$.). Let S_{+}be the set of all vectors v_{i} in S such that $\left\langle\vec{c}, v_{i}\right\rangle>0$. We claim that $A=\sum_{v_{i} \in S_{+}} v_{i}$ is a vertex of P. Indeed, let $b=\sum_{v_{i} \in S_{+}}\left\langle\vec{c}, v_{i}\right\rangle>0$. Then the hyperplane $H=\{\langle\vec{c}, x\rangle=b\}$ contains only the point A. Moreover, every point of $x \in P$ satisfies $\langle\vec{c}, x\rangle \leq b$. This shows that A is a vertex. We can also write down what the point A is. Notice that the vectors in S_{+}are precisely those vectors that end with 1 . It is not hard to check that the sum of these vectors is $\left(0,0, \ldots, 0,2^{n-1}\right)$. For similar reasons (and from symmetry) also the vector $\left(0,0, \ldots, 0,2^{n-1}, 0, \ldots, 0\right)$ is a vertex of P.

3 . Let P be the tetrahedron whose vertices are $(1,2,3),(2,1,-1),(1,1,0)$, and $(2,1,-3)$. Find a hyperplane H that supports P and intersects P at the edge with vertices $(1,2,3)$ and $(1,1,0)$.
Proof. We first find vectors orthogonal to the hyperplane H_{1}, through $(2,1,-1),(1,2,3)$ and $(1,1,0)$, and the hyperplane H_{2}, through $(2,1,-3)$, $(1,2,3)$ and $(1,1,0)$.
One can take $u=(-1,3,-1)$ orthogonal to H_{1} and then take $v=$ $(-3,3,-1)$ orthogonal to H_{2}. Notice that $H_{1}=\{\langle u, x\rangle=2\}$ and $H_{2}=\{\langle v, x\rangle=0\}$.

Because $\langle u,(2,1,-3)\rangle<2$, then indeed every point in P satisfies $\langle u, x\rangle \leq 2$.
Because $\langle v,(2,1,-1)\rangle<0$, then indeed every point in P satisfies $\langle v, x\rangle \leq 0$.
As explained in class, every positive linear combination of u and v will result in a vector \vec{c} that is orthogonal to a hyperplane H, as we need. In particular we can take $\vec{c}=u+v=(-4,6,-2)$. Then $H=\{\langle\vec{c}, x\rangle=2\}$ will do.
4. Let $\vec{a}_{1}, \ldots, \vec{a}_{n+1}$ be $n+1$ vectors in \mathbb{R}^{n} such that every n of them are linearly independent. Let $\vec{b} \in \mathbb{R}^{n+1}$ be a vector with positive coordinates. Let A be the matrix whose rows are a_{1}, \ldots, a_{n+1}. Show that if $\sum_{i=1}^{n+1} \vec{a}_{i}=0$, then the polyhedron $P=\{x \mid A x \leq b\}$ is bounded and not empty.
Proof. Notice that P is never empty because $O \in P$.
Because $\sum_{i=1}^{n+1} a_{i}=0$, every vector can be written as a linear combination of a_{1}, \ldots, a_{n+1} with nonnegative coefficients. This is because we can replace any $-a_{i}$ by $\sum_{j \neq i} a_{j}$.
In particular $e_{1}=(1,0,0, \ldots, 0)=\sum_{i=1}^{n+1} \alpha_{i} a_{i}$, where $\alpha_{i} \geq 0$.
Therefore, for every $x \in P$ we have $\left\langle e_{1}, x\right\rangle \leq \sum_{i=2}^{n+1} \alpha_{i} b_{i}$. This shows that the first coordinate of x is bounded from above.
We can now do the same trick and replace e_{1} by $-e_{1}$ and conclude that the first coordinate of x is bounded from below.

This applies to every coordinate of x and therefore P is bounded.

