
Discrete Optimization 2023 (EPFL):
Problem set of week 5

April 25, 2023

1. Consider the simplex (tetrahedron) P in R3 whose vertices are (1, 0, 0),
(−1, 1, 0), (−1,−1, 0), and (0, 0, 1). Find all the vectors −→c such that
the maximum of ⟨−→c ,−→x ⟩ on P is at the vertex (0, 0, 1).

Solution. One possible solution is direct: write −→c = (x, y, z). We
know that the maximum is always obtained at a vertex. Therefore,
we need that z ≥ x, z ≥ y − x, and z ≥ −x − y. From the last two
inequalities we get 2z ≥ −2x. Now together with the first inequality
this implies z ≥ 0. If z = 0, then necessarily x = 0 and y = 0. We
get the vector (0, 0, 0). This is a ”trivial” solution. If z > 0 we may
assume that it is equal to 1. This is because for any solution −→c also a
positive multiple of it will work. We now get y−x ≤ 1 and −x−y ≤ 1.
This gives x ≥ −1. For every x ≥ −1 we need −(1 + x) ≤ y ≤ 1 + x
Therefore, the solution are all the positive multiples of (x, y, 1) where
x ≥ −1 and −(1 + x) ≤ y ≤ 1 + x.

A more generic solution is to find the three vectors that are orthogonal
to the three hyper-planes meeting at (0, 0, 1) and pointing outside of P .
Denoting these vectors by v1, v2, and v3, there are b1, b2, b3 such that
every point x in P satisfies ⟨−→x , vi⟩ ≤ bi for i = 1.2.3. Denote by Hi

the hyper-plane ⟨−→x , vi⟩ = bi

Any vector c can be written in one way as −→c = α1v1 + α2v2 + α3v3.
If α1, α2, α3 are nonnegative, then −→c will work for us because (0, 0, 1)
has the maximal scalar product with each of v1, v2, and v3. If one of
α1, α2, α3 is negative, say α1 < 0, then −→c is not a solution because
by moving from (0, 0, 1) in a direction that is ”away from” (makes an
obtuse angle with) v1 along the intersection of H2 and H3, will increase
the scalar product with −→c .
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The solution is therefore, any positive linear combination of v1, v2, and
v3.

2. Let S be the set of all 2n vectors with coordinates that are equal either
to +1 or −1. Let P be the set of all linear combinations of the vectors
in S with coefficients greater than or equal to 0 and smaller than or
equal to 1. Show that P is convex and find at least 3 distinct vertices
of P .

Solution: To show that P is convex, denote the vectors in S by
v1, . . . , vm, where m = 2n. Consider two points in P , namely A =∑m

i=1 αivi and B =
∑m

i=1 βivi, where 0 ≤ αi, βi ≤ 1 for every i. Now
take 0 ≤ λ ≤ 1 and notice that

λA+ (1− λ)B =
m∑
i=1

(λαi + (1− λ)βi)vi.

Observe that 0 ≤ λαi+(1−λ)βi ≤ 1 for every i. Therefore, λA+(1−
λ)B is also in P and consequently, P is convex.

There is an easy generic way to find vertices in P . Let −→c be any vector
that is not orthogonal to any vector in S (any random vector will do,
but one can take for example the vector−→c = (1, 10, 102, . . . , 10m).). Let
S+ be the set of all vectors vi in S such that ⟨−→c , vi⟩ > 0. We claim that
A =

∑
vi∈S+

vi is a vertex of P . Indeed, let b =
∑

vi∈S+
⟨−→c , vi⟩ > 0.

Then the hyperplane H = {⟨−→c , x⟩ = b} contains only the point A.
Moreover, every point of x ∈ P satisfies ⟨−→c , x⟩ ≤ b. This shows that A
is a vertex. We can also write down what the point A is. Notice that the
vectors in S+ are precisely those vectors that end with 1. It is not hard
to check that the sum of these vectors is (0, 0, . . . , 0, 2n−1). For similar
reasons (and from symmetry) also the vector (0, 0, . . . , 0, 2n−1, 0, . . . , 0)
is a vertex of P .

3. Let P be the tetrahedron whose vertices are (1, 2, 3), (2, 1,−1), (1, 1, 0),
and (2, 1,−3). Find a hyperplane H that supports P and intersects P
at the edge with vertices (1, 2, 3) and (1, 1, 0).

Proof. We first find vectors orthogonal to the hyperplane H1, through
(2, 1,−1), (1, 2, 3) and (1, 1, 0), and the hyperplaneH2, through (2, 1,−3),
(1, 2, 3) and (1, 1, 0).

One can take u = (−1, 3,−1) orthogonal to H1 and then take v =
(−3, 3,−1) orthogonal to H2. Notice that H1 = {⟨u, x⟩ = 2} and
H2 = {⟨v, x⟩ = 0}.
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Because ⟨u, (2, 1,−3)⟩ < 2, then indeed every point in P satisfies
⟨u, x⟩ ≤ 2.

Because ⟨v, (2, 1,−1)⟩ < 0, then indeed every point in P satisfies
⟨v, x⟩ ≤ 0.

As explained in class, every positive linear combination of u and v
will result in a vector −→c that is orthogonal to a hyperplane H, as
we need. In particular we can take −→c = u + v = (−4, 6,−2). Then
H = {⟨−→c , x⟩ = 2} will do.

4. Let −→a 1, . . . ,
−→a n+1 be n + 1 vectors in Rn such that every n of them

are linearly independent. Let
−→
b ∈ Rn+1 be a vector with positive

coordinates. Let A be the matrix whose rows are a1, . . . , an+1. Show
that if

∑n+1
i=1

−→a i = 0, then the polyhedron P = {x | Ax ≤ b} is bounded
and not empty.

Proof. Notice that P is never empty because O ∈ P .

Because
∑n+1

i=1 ai = 0, every vector can be written as a linear combina-
tion of a1, . . . , an+1 with nonnegative coefficients. This is because we
can replace any −ai by

∑
j ̸=i aj.

In particular e1 = (1, 0, 0, . . . , 0) =
∑n+1

i=1 αiai, where αi ≥ 0.

Therefore, for every x ∈ P we have ⟨e1, x⟩ ≤
∑n+1

i=2 αibi. This shows
that the first coordinate of x is bounded from above.

We can now do the same trick and replace e1 by −e1 and conclude that
the first coordinate of x is bounded from below.

This applies to every coordinate of x and therefore P is bounded.
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