
Discrete Optimization 2023 (EPFL):
Problem set of week 7

April 18, 2023

1. Let P be the unit cube in Rn. That is P = {(x1, . . . , xn) | 0 ≤ xi ≤
1 i = 1, . . . , n}. Show that for every −→c ∈ Rn the simplex algorithm
will find the maximum of ⟨−→c ,−→x ⟩ over all −→x ∈ P in at most n iterations
(although it has 2n vertices).

Solution: Notice that the vertices of the cube are precisely the 2n vec-
tors {(x1, . . . , xn) | xi ∈ {0, 1}}. Two vertices are neighbors (adjacent)
if and only if they differ in only one coordinate. This is because every
n − 1 supporting hyperplanes with nonempty intersection fix n − 1 of
the coordinates of the two vertices of the same edge of the cube. When
we apply an iteration of the simplex algorithm, we move from one ver-
tex to a neighbor of it. We say that the index of this iteration is i if
the two vertices differ at the i’th coordinate. We claim that we never
have two iterations with the same index. This is because if we have an
iteration with index i then ci must be different from 0 or otherwise this
iteration will not improve the value of ⟨−→c ,−→x ⟩. If ci > 0, for example,
then in this iteration we necessarily change xi from 0 to 1. This can
happen only once. We will never change xi from 1 to 0 again because
it will not improve ⟨−→c ,−→x ⟩. Therefore, it cannot be that we will have
another iteration with index i. We argue similarly if ci < 0. It now
follows that there are at most n iterations.

2. Consider the following (not very difficult) maximization problem: Find
max

∑n
i=1 xi subject to xi + xj ≤ 1 for every i ̸= j.

What is the dual minimization problem? Try to formulate it in a
natural way for a graph on n vertices since there are only n variables
in dimension n.
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Solution: The linear program here is max{⟨c, x⟩ | Ax ≤ b}, where A
is the

(
n
2

)
×n matrix with all the m =

(
n
2

)
possible rows having two 1’s

and the rest 0’s. b = (1, 1, . . . , 1)T ∈ R(
n
2) and c = (1, 1, . . . , 1)T ∈ Rn.

The dual problem is min{⟨y, b⟩ | yTA = cT , y ≥ 0}.
In terms of graphs, let G be the complete graph on n vertices. It has
m =

(
n
2

)
edges. The dual problem is to find the optimal way to give

nonnegative weights to the edges of the graph such that on one hand
the sum of the weights of the edges going from any fixed vertex is equal
to 1 and on the other hand we want the sum of the weights of all edges
to be minimum.

Notice that for the dual problem all feasible points give the optimal
value. This is not the case for the primal problem.

3. Let F be a family of m subsets of {1, . . . , n}. We wish to find x1, . . . , xn

such that
∑

xi is minimum and
∑

i∈S xi ≥ 1 for every S ∈ F . Verify
that this problem can be written as a linear program. What is the dual
(and therefore equivalent) minimization problem?

Solution: We can write our problem as:

−max{
n∑

i=1

(−xi) | Ax ≤ b},

where b = (−1,−1, . . . ,−1)T ∈ Rm and A is the matrix that has m
rows that represent the sets in F . For every S ∈ F we have a row
with −1 at those coordinates i ∈ S and 0 otherwise. Notice that∑n

i=1(−xi) = ⟨c, x⟩, where c = (−1,−1, . . . ,−1)T ∈ Rn. Therefore,
our linear problem is −max{⟨c, x⟩ | Ax ≤ b}. For convenience denote
the sets in F by S1, . . . , Sm.

The dual problems is −min{⟨b, y⟩ | yTA = cT , y ≥ 0}. We are
looking for −min

∑
−yi where yTA = (−1, . . . ,−1). This is the same

as finding the maximum of
∑

yi subject to yi ≥ 0 for every i and∑
j∈Si

yi = 1 for every j.

4. Consider the linear program max{⟨c, x⟩ | Ax ≤ b} and assume that it
attains a maximum at a single point x at which precisely n constraints
meet. Prove that the dual linear problem has a unique minimum.

Solution: We know from the simplex algorithm that there are λ1, . . . , λn >
0 such that

∑
λiai = c for n rows of A that we assume without loss of
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generality are aT1 , . . . , a
T
n . Notice that a1, . . . , an are linearly indepen-

dent because x is a vertex.

Consider now the vector y = (λ1, . . . , λn, 0, . . . , 0). Then yTA = cT and
hence ⟨b, y⟩ is a minimum of the dual problem.

To show that y is the unique minimum, suppose not, then there is
another minimum y′, which should be positive in at least one coordi-
nates that are equal to 0 in y, since otherwise there is another linear
combination of a1, . . . , an that is equal to c. This is impossible because
a1, . . . , an are linearly independent.

Now ⟨c, x⟩ = y′TAx ≤ y′T b. On the other hand we assume that y′T b
is also the minimum value of the dual program. Therefore, it must be
that x satisfies equality in Ax ≤ b for every coordinate at which y′ is
positive. In particular x has to satisfy equality in another row that is
not one of a1, . . . , an. This is a contradiction to our assumption that
precisely n constraints meet at x.
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