Linear Programming 2023 (EPFL): Problem set of week 7

April 12, 2023

1. Let P be the unit cube in \mathbb{R}^{n}. That is $P=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leq x_{i} \leq\right.$ $1, \quad i=1, \ldots, n\}$. Show that for every $\vec{c} \in \mathbb{R}^{n}$ the simplex algorithm will find the maximum of $\langle\vec{c}, \vec{x}\rangle$ over all $\vec{x} \in P$ in at most n iterations (although it has 2^{n} vertices).
2. Consider the following (not very difficult) maximization problem: Find $\max \sum_{i=1}^{n} x_{i}$ subject to $x_{i}+x_{j} \leq 1$ for every $i \neq j$.

What is the dual minimization problem? Try to formulate it in a natural way for a graph on n vertices.
3. Let \mathcal{F} be a family of m subsets of $\{1, \ldots, n\}$. We wish to find x_{1}, \ldots, x_{n} such that $\sum x_{i}$ is minimum and $\sum_{i \in S} x_{i} \geq 1$ for every $S \in \mathcal{F}$. Verify that this problem can be written as a linear program. What is the dual (and therefore equivalent) minimization problem?
4. Consider the linear program $\max \{\langle x, \vec{c}\rangle \mid A x \leq b\}$ and assume that it attains a maximum at a single point x at which precisely n constraints meet. Prove that the dual linear problem has a unique minimum.

