
Discrete Optimization 2023 (EPFL):
Problem set of week 6

April 4, 2023

1. Let A be an m × n matrix with rows a1, . . . , am and let b ∈ Rm be

given. Consider the polyhedron P defined by A−→x ≤
−→
b .

Assume that I = {1, 2, . . . , n} is a basis, but not a feasible basis.
Denote by Q the point that is the intersection of the n hyperplanes
{⟨ai, x⟩ = bi} for i = 1, . . . , n.

Prove that for every λ1, . . . , λn > 0 there is α such that the hyperplane
H = {⟨

∑n
i=1 λiai, x⟩ = α separates Q and P .

Solution: Because a1, . . . , an are linearly independent Q, is the only
point that satisfies {⟨ai, x⟩ = bi} for i = 1, . . . , n. Therefore, for every
point of x ∈ P we have ⟨

∑n
i=1 λiai, x⟩ <

∑n
i=1 bi.

Let y ∈ P be the point of maximum of ⟨
∑n

i=1 λiai, x⟩ over all x in P .
We have ⟨

∑n
i=1 λiai, y⟩ <

∑n
i=1 bi. Taking α to be any number between∑n

i=1 bi and < ⟨
∑n

i=1 λiai, y⟩ will yield a separating hyperplane.

2. Let P be a (bounded) polytope in R3 with vertices v1, . . . , vk. Let
−→c ∈ R3 be such that ⟨c, vi⟩ ≠ ⟨c, vj⟩ for every i ̸= j. Assume that
P is a simple polytope, in the sense that every vertex has precisely 3
neighbors.

We say that a vertex v of P is of type 1 if precisely two of its three neigh-
bors have their scalar product with c larger than the scalar product of
v and c. We say that v is of type 2 if precisely two of its three neighbors
have their scalar product with c smaller than the scalar product of v
with c.

Show that the number of vertices of type 1 is always equal to the
number of vertices of type 2. Conclude that every simple polytope in
R3 must have an even number of vertices.
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Is it true also in dimensions 2, 4, 5, 6, 7?

hint: observe that a vertex of type 1 is the ”lowest” vertex of precisely
one face of dimension 2 of P . A vertex of type 2 is the ”highest” vertex
of precisely one face of P of dimension 2.

Solution: Every two dimensional face of P is by itself a polytope and
it has one vertex with the largest scalar product with c and one vertex
with the smallest scalar product with c. Any vertex is a meeting point
of three 2-dimensional faces of P (because P is simple). If it is of type
1, it will be the minimum vertex of exactly one of the three faces. If it
is of type 2, it will be the maximum in exactly one of the three faces.
There is also the maximum vertex of P that is maximum in all three
faces meeting there. There is also the minimum vertex of P that is
also the minimum of the three faces containing it. Altogether because
the number of times a vertex is minimum in a 2-dimensional face is
equal to the number of times a vertex is maximum in a 2-dimensional
face of P , then the number of vertices of type 1 must be equal to the
number of vertices of type 2. This implies that the number of vertices
in P is even because there are only two additional vertices the global
maximum and the global minimum with respect to the scalar product
with c.

By the way, the fact that the number of vertices is even is not surprising
because in the graph of neighboring vertices every vertex has degree
3. We know that 3V = 2E so V is even. This is true in any odd
dimension. But also the result about type 1 and 2 can be generalized
to higher dimensions (with more types). This can be done by induction
of the dimension. Try it for dimension 4 using the result for dimension
3. You need to consider the 3-dimensional faces of P and for each one
we know already what is going on inside it.

Recall that K is a convex set if for every x, y ∈ K and every 0 ≤ λ ≤ 1
we have λx+ (1− λ)y ∈ K.

3. Let P be a set of vectors (points) in Rn. The cone generated by P is
the set of all finite sums

∑
aipi such that ai ≥ 0 for every i and pi ∈ P .

Show that the cone generated by a set of points is always a convex set.

Solution: Suppose A =
∑

aipi and B =
∑

bipi are two points in P .
Then for every 0 ≤ λ ≤ 1 we have λA+(1−λ)B =

∑
(λai+(1−λ)bi)pi

is by definition also a point in the cone generated by P .
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4. Let K be a convex set and assume p1, . . . , pt ∈ K. Show that
∑

λipi ∈
K for every positive λ1, . . . , λt whose sum is equal to 1,

Hint: use induction on t. For t = 2 it is just the definition of being
convex.

Solution: By induction on t.
∑t

i=1 λipi = (1−λt)(
∑t−1

i=1
λi

1−λt
pi)+λtpt.

Notice that
∑t−1

i=1
λi

1−λt
= 1 by induction hypothesis.

We may assume λt < 1 for otherwise λ1 = . . . = λt−1 = 0 and there is
nothing to prove.

5. Given a set P of points, the convex hull of P is the set of all finite sums
of the form

∑
λipi where

∑
λi = 1 and the λi’s are all nonnegative and

the pi’s are points in P . Show that the convex hull of a set P of points
is a convex set. Conclude it is the smallest convex set containing P .

Solution: Assume A =
∑

αipi and B =
∑

βipi are two such sums (we
can assume the points pi in both are the same by taking the union).
For any 0 ≤ λ ≤ 1 we have λA + (1 − λ)B =

∑
(λαi + (1 − λ)βi)pi.

Notice that
∑

λαi+(1−λ)βi = λ
∑

αi+(1−λ)
∑

βi = λ+(1−λ) = 1.
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