Discrete Optimization 2023 (EPFL): Problem set of week 8

April 27, 2023

1. Let K be a cone in \mathbb{R}^n . Prove that any hyper-plane H supporting K must pass through the origin O.

Solution: Let $H = \{\langle q, x \rangle = r\}$ be a supporting hyper-plane for the cone K. We need to show r = 0. Let $v \in H \cap K$. We may assume that $\langle q, x \rangle \geq r$ for every $x \in K$, with $r \geq 0$ (otherwise replace q by -q and replace r by -r). Because $v \in K$ and K is a cone, then also $\frac{1}{2}v, 2v \in K$. We have $\langle q, \frac{1}{2}v \rangle = \frac{1}{2}r$ and $\langle q, 2v \rangle = 2r$. Hence it must be that $\frac{1}{2}r, 2r \geq r$. This implies r = 0.

2. Prove that $A\overrightarrow{x} = \overrightarrow{b}$ has a solution (we do not require $x \ge 0$ as in Farkas' Lemma) if and only if for every y such that $y^T A = 0$ we also have $\langle y, b \rangle = 0$.

Solution: Ax = b has a solution if and only if Ax - Az = b has a solution with $x, z \ge 0$. By Farkas' lemma applied for the system A'(x, z) = bfor A' = (A, -A), this system has a solution if and only if for every ysuch that $y^T A' \ge 0$ we have $\langle y, b \rangle \ge 0$. Now $y^T A' \ge 0$ is equivalent to $y^T A \ge 0$ and $y^T(-A) \ge 0$. Hence $y^T A = 0$.

Therefore, the original system has a solution if and only if $y^T A = 0$ implies $\langle y, b \rangle \ge 0$.

But this is if and only if $y^T A = 0$ implies $\langle y, b \rangle = 0$

(because if $y^T A = 0$, then also $-y^T A = 0$ and so this should imply $\langle y, b \rangle \ge 0$ and $\langle -y, b \rangle \ge 0$. This is the same as $\langle y, b \rangle = 0$.

3. Prove the following Farkas-like Lemma: Ax < 0, $x \ge 0$ has a solution if and only if there is no y > 0 such that $y^T A \ge 0$.

Solution: $Ax < 0, x \ge 0$ has a solution if and only if $Ax + z = (-\epsilon, ..., -\epsilon), x \ge 0 \in \mathbb{R}^n, z \ge 0 \in \mathbb{R}^m$ has a solution for some $\epsilon > 0$.

We apply Farkas' lemma. The matrix of the new system is

$$A' = (A \mid I_m).$$

The new system has a solution if and only if $y^T A' \ge 0$ implies also $\langle y, (-\epsilon, \ldots, -\epsilon) \rangle \ge 0$.

Now, $y^T A' \ge 0$ is equivalent to $y^T A \ge 0$ and $y \ge 0$. In such a case in order for y to satisfy $\langle y, (-\epsilon, \ldots, -\epsilon) \rangle \ge 0$ (for some $\epsilon > 0$) we must have y = 0. Therefore, having $y^T A' \ge 0$ implying $\langle y, (-\epsilon, \ldots, -\epsilon) \rangle \ge 0$ is the same as $y^T A' \ge 0$ implying y = 0. This is the same as $y^T A \ge 0$ and $y \ge 0$ implies y = 0.

This is the same as if there is no $y \ge 0$, $y \ne 0$ such that $y^T A \ge 0$.

This is the same as if there is no y > 0 such that $y^T A \ge 0$.

4. Prove the following Farkas-like Lemma: Ax = 0, x > 0 has a solution if and only if there is no y such that $y^T A \ge 0$ and $y^T A \ne 0$.

Solution: Ax = 0, x > 0 has a solution if and only if

 $Ax = 0, -x + z = (-\epsilon, ..., -\epsilon), x, z \ge 0$ has a solution for some $\epsilon > 0$. This is the same as $A'(x, z) = (0, 0, ..., 0, -\epsilon, ..., -\epsilon)$ has a solution for the matrix

$$A' = \begin{pmatrix} A & 0_{m,n} \\ -I_n & I_n \end{pmatrix} \in \mathbb{R}^{(m+n) \times 2n}$$

By apply Farkas' lemma, this is equivalent to:

 $(q, p)^T A' \ge 0$ implies $\langle (q, p), (0, \dots, 0, -\epsilon, \dots, -\epsilon) \rangle \ge 0$

This is the same as $q^T A - p^T \ge 0$, $p \ge 0$ implies $\langle p, (-\epsilon, \dots, -\epsilon) \rangle \ge 0$. This is the same as $q^T A - p^T \ge 0$, $p \ge 0$ implies p = 0 (because it is not possible that $p \ge 0$ and $\langle p, (-\epsilon, \dots, -\epsilon) \rangle \ge 0$, unless p = 0).

This is the same as $q^T A \ge 0$ implies $q^T A = 0$ (because if not, then we could take, for example, $p^T = \frac{1}{2}q^T A$ and then $q^T A - p^T \ge 0$ but $p = \frac{1}{2}A^T q \ne 0$). This is exactly what we want.