Discrete Optimization 2023 (EPFL): Problem set of week 8

April 27, 2023

1. Let K be a cone in \mathbb{R}^{n}. Prove that any hyper-plane H supporting K must pass through the origin O.

Solution: Let $H=\{\langle q, x\rangle=r\}$ be a supporting hyper-plane for the cone K. We need to show $r=0$. Let $v \in H \cap K$. We may assume that $\langle q, x\rangle \geq r$ for every $x \in K$, with $r \geq 0$ (otherwise replace q by $-q$ and replace r by $-r$). Because $v \in K$ and K is a cone, then also $\frac{1}{2} v, 2 v \in K$. We have $\left\langle q, \frac{1}{2} v\right\rangle=\frac{1}{2} r$ and $\langle q, 2 v\rangle=2 r$. Hence it must be that $\frac{1}{2} r, 2 r \geq r$. This implies $r=0$.
2. Prove that $A \vec{x}=\vec{b}$ has a solution (we do not require $x \geq 0$ as in Farkas' Lemma) if and only if for every y such that $y^{T} A=0$ we also have $\langle y, b\rangle=0$.
Solution: $A x=b$ has a solution if and only if $A x-A z=b$ has a solution with $x, z \geq 0$. By Farkas' lemma applied for the system $A^{\prime}(x, z)=b$ for $A^{\prime}=(A,-A)$, this system has a solution if and only if for every y such that $y^{T} A^{\prime} \geq 0$ we have $\langle y, b\rangle \geq 0$. Now $y^{T} A^{\prime} \geq 0$ is equivalent to $y^{T} A \geq 0$ and $y^{T}(-A) \geq 0$. Hence $y^{T} A=0$.
Therefore, the original system has a solution if and only if $y^{T} A=0$ implies $\langle y, b\rangle \geq 0$.
But this is if and only if $y^{T} A=0$ implies $\langle y, b\rangle=0$
(because if $y^{T} A=0$, then also $-y^{T} A=0$ and so this should imply $\langle y, b\rangle \geq 0$ and $\langle-y, b\rangle \geq 0$. This is the same as $\langle y, b\rangle=0$.
3. Prove the following Farkas-like Lemma: $A x<0, x \geq 0$ has a solution if and only if there is no $y>0$ such that $y^{T} A \geq 0$.

Solution: $A x<0, x \geq 0$ has a solution if and only if $A x+z=$ $(-\epsilon, \ldots,-\epsilon), x \geq 0 \in \mathbb{R}^{n}, z \geq 0 \in \mathbb{R}^{m}$ has a solution for some $\epsilon>0$.
We apply Farkas' lemma. The matrix of the new system is

$$
A^{\prime}=\left(A \mid I_{m}\right)
$$

The new system has a solution if and only if $y^{T} A^{\prime} \geq 0$ implies also $\langle y,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$.
Now, $y^{T} A^{\prime} \geq 0$ is equivalent to $y^{T} A \geq 0$ and $y \geq 0$. In such a case in order for y to satisfy $\langle y,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$ (for some $\epsilon>0$) we must have $y=0$. Therefore, having $y^{T} A^{\prime} \geq 0$ implying $\langle y,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$ is the same as $y^{T} A^{\prime} \geq 0$ implying $y=0$. This is the same as $y^{T} A \geq 0$ and $y \geq 0$ implies $y=0$.

This is the same as if there is no $y \geq 0, \quad y \neq 0$ such that $y^{T} A \geq 0$.
This is the same as if there is no $y>0$ such that $y^{T} A \geq 0$.
4. Prove the following Farkas-like Lemma: $A x=0, x>0$ has a solution if and only if there is no y such that $y^{T} A \geq 0$ and $y^{T} A \neq 0$.
Solution: $A x=0, x>0$ has a solution if and only if
$A x=0,-x+z=(-\epsilon, \ldots,-\epsilon), x, z \geq 0$ has a solution for some $\epsilon>0$.
This is the same as $A^{\prime}(x, z)=(0,0 \ldots, 0,-\epsilon, \ldots,-\epsilon)$ has a solution for the matrix
$A^{\prime}=\left(\begin{array}{cc}A & 0_{m, n} \\ -I_{n} & I_{n}\end{array}\right) \in \mathbb{R}^{(m+n) \times 2 n}$
By apply Farkas' lemma, this is equivalent to:
$(q, p)^{T} A^{\prime} \geq 0$ implies $\langle(q, p),(0, \ldots, 0,-\epsilon, \ldots,-\epsilon)\rangle \geq 0$
This is the same as $q^{T} A-p^{T} \geq 0, p \geq 0$ implies $\langle p,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$.
This is the same as $q^{T} A-p^{T} \geq 0, \quad p \geq 0$ implies $p=0$ (because it is not possible that $p \geq 0$ and $\langle p,(-\epsilon, \ldots,-\epsilon)\rangle \geq 0$, unless $p=0$).
This is the same as $q^{T} A \geq 0$ implies $q^{T} A=0$ (because if not, then we could take, for example, $p^{T}=\frac{1}{2} q^{T} A$ and then $q^{T} A-p^{T} \geq 0$ but $\left.p=\frac{1}{2} A^{T} q \neq 0\right)$. This is exactly what we want.

