Integer Optimization Problem Set 5

Working session: March 27, Presentations: April 3

In this problem set, we will understand the basic principle of the state-of-the-art method to solve integer programming problems

$$
\begin{equation*}
\max \left\{c^{T} x: A x=b, 0 \leqslant x \leqslant u, x \in \mathbb{Z}^{n}\right\}, \tag{1}
\end{equation*}
$$

where $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}, u \in \mathbb{N}^{n}$ and $c \in \mathbb{Z}^{n}$. The running time of the method will be

$$
\begin{equation*}
(m \Delta+1)^{O\left(m^{2}\right)} \operatorname{poly}(\operatorname{size}(b)+\operatorname{size}(u)) \tag{2}
\end{equation*}
$$

where $a_{i j} \leqslant \Delta$ for each i, j. Whether this quadratic dependence on m in the exponent can be improved or not, is a prominent open problem.
i) Let $x \in \mathbb{Z}^{n} \backslash\{0\}$ satisfy $A x=0$ and $x \geqslant 0$. Use the Steinitz lemma to conclude that there exists a $y \in \mathbb{Z}^{n} \backslash\{0\}$ with $A y=0$ and

1) $0 \leqslant y \leqslant x$ (component-wise), and
2) $\|y\|_{1} \leqslant(m \Delta+1)^{O(m)}$.
ii) For two vectors $x, y \in \mathbb{Z}^{n}$ we define the partial order $y \sqsubseteq x$ if for each $i, y_{i} \cdot x_{i} \geqslant 0$ and $\left|y_{i}\right| \leqslant\left|x_{i}\right|$ hold. Let $x \in \mathbb{Z}^{n} \backslash\{0\}$ satisfy $A x=0$. Conclude that there exists a $y \in \mathbb{Z}^{n} \backslash\{0\}$ with
3) $A y=0$,
4) $y \sqsubseteq x$, and
5) $\|y\|_{1} \leqslant(m \Delta+1)^{O(m)}$.
iii) Let $\bar{x}, x^{*} \in \mathbb{Z}^{n}$ be an optimal and feasible solution of (1) respectively. Show that the difference $\bar{x}-x^{*}$ can be written as a sum

$$
\bar{x}-x^{*}=\sum_{i \in I} y_{i}, \text { where } I \text { is a finite index set and }
$$

each y_{i} satisfies

1) $A y_{i}=0$,
2) $y_{i} \sqsubseteq \bar{x}-x^{*}$, and
3) $\left\|y_{i}\right\|_{1} \leqslant(m \Delta+1)^{O(m)}$.
iv) Show that a feasible solution x^{*} of (1) is an optimal solution, if and only if the optimal value of the following integer program is 0 .

$$
\max c^{T} x
$$

s.t.

$$
\begin{aligned}
& A x=0 \\
& 0 \leqslant x+x^{*} \leqslant u \\
& \|x\|_{1} \leqslant(m \Delta+1)^{O(m)}
\end{aligned}
$$

v) Design a dynamic program that solves the integer optimization problem in iv) in the running time (2).
vi) Again, let $\bar{x}, x^{*} \in \mathbb{Z}^{n}$ be an optimal and feasible solution of (1) respectively. Referring to iii) show that there exists a subset $\widetilde{I} \subseteq I$ of size at most n and $\mu_{i} \geqslant 0, i \in \widetilde{I}$ with

$$
\bar{x}-x^{*}=\sum_{i \in \widetilde{I}} \mu_{i} y_{i} .
$$

vii) Let $D=c^{T}\left(\bar{x}-x^{*}\right)$. Show that there exists a $i \in \widetilde{I}$ and a $k \in \mathbb{N}$ such that $x^{*}+2^{k} y_{i}$ is feasible and

$$
c^{T}\left(\bar{x}-\left(x^{*}+2^{k} y_{i}\right)\right) \leqslant D(1-1 /(4 n))
$$

holds.
viii) Show how to find such a y_{i} in the running time (1).
ix) Show how to solve the integer program (1) in time (1).

