Integer Optimization Problem Set 4

To be discussed on March 20 and after

Consider an integer program in so-called equation standard form

$$
\begin{equation*}
\max \left\{c^{T} x: A x=b, x \geqslant 0, x \in \mathbb{Z}^{n}\right\} \tag{1}
\end{equation*}
$$

with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$ and let Δ be an upper bound on the absolute value of components of A and b. In this exercise, we will show that, if the IP is feasible and bounded, then there exists an optimal solution x^{*} with $\left\|x^{*}\right\|_{\infty} \leqslant(m \Delta)^{O(m)}$. To this end, recall the Hadamard bound $|\operatorname{det}(B)| \leqslant \Pi_{i}\left\|b_{i}\right\|_{2}$ and the matrix inversion formula $B^{-1}=\widetilde{B} / \operatorname{det}(B)$, where $B \in \mathbb{R}^{m \times m}$ is invertible, \widetilde{B} is the cofactor matrix (or its transpose), and the b_{i} are the columns of B.

1. Let $B \in \mathbb{Z}^{m \times m}$ be a full-rank matrix with $\left\|b_{i j}\right\|_{\infty} \leqslant \Delta$ for each i, j. Show that $B^{-1}=C / D$, where $0<D \leqslant(m \cdot \Delta)^{m / 2}$ is an integer and $C \in \mathbb{Z}^{m \times m}$ is an integer matrix with $\left|c_{i j}\right| \leqslant(m \cdot \Delta)^{m / 2}$ for each i, j.
Let $J \subseteq\{1, \ldots, n\}$ be a nonempty index set such that the columns $a_{j}, j \in J$ are linearly dependent. Show that there exists $g \in \operatorname{ker}(A) \cap \mathbb{Z}^{n} \backslash\{0\}$ such that $\|g\|_{\infty} \leqslant(m \Delta)^{2 m}$ and $g_{k}=0$ for each $k \notin J .{ }^{1}$
2. Let $x^{*} \in \mathbb{Z}_{\geqslant 0}^{n}$ be an optimal solution of (1). Let $J \subseteq\{1, \ldots, n\}$ be the set of indices with $x_{j}^{*}>$ $(m \Delta)^{2 m}$. Show that the corresponding columns $a_{j}, j \in J$ are linearly independent.
Hint: This is a bit like in the proof of the Carathéodory Theorem. It can be considered to be an integer version of it.
How large can the number of columns n be, if there are no redundant columns?
3. Show that there exists an absolute constant K and an optimal solution x^{*} that satisfies $\left\|x^{*}\right\|_{\infty} \leqslant$ $(m \Delta)^{K m}$.
[^0]The next exercise shows how to reduce a problem

$$
\begin{equation*}
A x=b, x \in\{0,1\}^{n} \tag{2}
\end{equation*}
$$

to the solution of one equation

$$
\begin{equation*}
a^{T} x=\beta, x \in\{0,1\}^{n}, \tag{3}
\end{equation*}
$$

where $A \in \mathbb{Z}^{m \times n} b \in \mathbb{Z}^{m}, a \in \mathbb{Z}^{n}$ and $\beta \in \mathbb{Z}$. To simplify the reasoning, we assume that each entry of A is ± 1 or 0 . Let $\lambda \in\{0, \ldots, M\}^{m}, a^{T}=\lambda^{T} A$ and $\beta=\lambda^{T} b$. Furthermore, let $S_{1}, S_{2} \subseteq\{0,1\}^{n}$ be the set of solutions of (2) and (3) respectively.
4. (a) Show that $S_{1} \subseteq S_{2}$ holds.
(b) An element $x^{*} \in\{0,1\}^{n}$ belongs to $S_{2} \backslash S_{1}$ if and only if $\lambda \perp\left(A x^{*}-b\right)$.
(c) Suppose that λ is chosen i.i.d. at random from $\{0, \ldots, M\}$ and that $x^{*} \in\{0,1\}^{n} \backslash S_{1}$. Show that

$$
P\left[\lambda \perp\left(A x^{*}-b\right)\right] \leqslant 1 / M
$$

5. (a) Show that the number of vectors $\left(A x^{*}-b\right), x^{*} \in\{0,1\}^{n}$ is bounded by $(2 n+1)^{m}$.
(b) Show

$$
P\left[S_{1} \neq S_{2}\right] \leqslant(2 n+1)^{m} / M
$$

(c) For $M=(2 n+1)^{2 m}$,

$$
P\left[S_{1} \neq S_{2}\right] \leqslant \frac{1}{2 n}^{m}
$$

How many bits has the number M then, if it is represented in a computer?
This is a simple randomized reduction. There are also simple deterministic reductions. Such a reduction shows that the knapsack problem is NP hard. For the following exercise you can assume the existence of such a deterministic reduction with $S_{1}=S_{2}$ is guaranteed.
6. Show that the knapsack problem is NP hard, by providing a reduction from SAT.

[^0]: ${ }^{1}$ A generous upper bound.

