
Integer Optimization
Problem Set 4

To be discussed on March 20 and after

Consider an integer program in so-called equation standard form

max{cT x : Ax = b, x ⩾ 0, x ∈Zn}, (1)

with A ∈Zm×n and b ∈Zm and let∆ be an upper bound on the absolute value of components of A and
b. In this exercise, we will show that, if the IP is feasible and bounded, then there exists an optimal
solution x∗ with ∥x∗∥∞ ⩽ (m∆)O(m). To this end, recall the Hadamard bound |det(B)|⩽∏

i ∥bi∥2 and
the matrix inversion formula B−1 = B̃/det(B), where B ∈ Rm×m is invertible, B̃ is the cofactor matrix
(or its transpose), and the bi are the columns of B .

1. Let B ∈Zm×m be a full-rank matrix with ∥bi j∥∞ ⩽∆ for each i , j . Show that B−1 =C /D , where
0 < D ⩽ (m ·∆)m/2 is an integer and C ∈ Zm×m is an integer matrix with |ci j | ⩽ (m ·∆)m/2 for
each i , j .
Let J ⊆ {1, . . . ,n} be a nonempty index set such that the columns a j , j ∈ J are linearly dependent.
Show that there exists g ∈ ker(A)∩Zn\{0} such that ∥g∥∞ ⩽ (m∆)2m and gk = 0 for each k ̸∈ J .1

2. Let x∗ ∈ Zn
⩾0 be an optimal solution of (1). Let J ⊆ {1, . . . ,n} be the set of indices with x∗

j >
(m∆)2m . Show that the corresponding columns a j , j ∈ J are linearly independent.

Hint: This is a bit like in the proof of the Carathéodory Theorem. It can be considered to be an
integer version of it.

How large can the number of columns n be, if there are no redundant columns?

3. Show that there exists an absolute constant K and an optimal solution x∗ that satisfies ∥x∗∥∞ ⩽
(m∆)K m .

1A generous upper bound.
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The next exercise shows how to reduce a problem

Ax = b, x ∈ {0,1}n (2)

to the solution of one equation
aT x =β, x ∈ {0,1}n , (3)

where A ∈ Zm×n b ∈ Zm , a ∈ Zn and β ∈ Z. To simplify the reasoning, we assume that each entry of
A is ±1 or 0. Let λ ∈ {0, . . . , M }m , aT = λT A and β= λT b. Furthermore, let S1,S2 ⊆ {0,1}n be the set of
solutions of (2) and (3) respectively.

4. (a) Show that S1 ⊆ S2 holds.

(b) An element x∗ ∈ {0,1}n belongs to S2\S1 if and only if λ⊥(Ax∗−b).

(c) Suppose that λ is chosen i.i.d. at random from {0, . . . , M } and that x∗ ∈ {0,1}n\S1. Show
that

P
[
λ⊥(Ax∗−b)

]
⩽ 1/M .

5. (a) Show that the number of vectors (Ax∗−b), x∗ ∈ {0,1}n is bounded by (2n +1)m .

(b) Show
P [S1 ̸= S2]⩽ (2n +1)m/M .

(c) For M = (2n +1)2m ,

P [S1 ̸= S2]⩽
1

2n

m

.

How many bits has the number M then, if it is represented in a computer?

This is a simple randomized reduction. There are also simple deterministic reductions. Such a re-
duction shows that the knapsack problem is NP hard. For the following exercise you can assume the
existence of such a deterministic reduction with S1 = S2 is guaranteed.

6. Show that the knapsack problem is NP hard, by providing a reduction from SAT.
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