Integer Optimization Problem Set 3

To be discussed on March 13

1. Let $P, Q \subseteq \mathbb{R}^{n}$. Show that

$$
\operatorname{conv}(P) \oplus \operatorname{conv}(Q)=\operatorname{conv}(P \oplus Q) .
$$

Let P and C be subsets of \mathbb{R}^{n}. Show that one has

$$
P_{I} \oplus C_{I} \subseteq(P \oplus C)_{I} .
$$

Does equality hold?
The following exercises are deriving the Minkowski-Weyl theorem from linear programming theory. Recall the following fact from linear programming. If $\max \left\{c^{T} x: x \in \mathbb{R}^{n}, A x \leqslant b\right\}$ is feasible and bounded and if $\operatorname{rank}(A)=n$, then there exists an optimal vertex solution x^{*}. I.e., x^{*} satisfies n linear inequalities - whose left-hand-side vectors are a basis of \mathbb{R}^{n} - with equality.
2. Let $A \in \mathbb{R}^{n \times m}$, consider the finitely generated cone $\mathscr{C}=\left\{A \lambda: \lambda \in \mathbb{R}_{\geqslant 0}^{m}\right\}$ and let $b \notin \mathscr{C}$. With the separation theorem, there exists a hyperplane $\left\{y: x^{T} y=\beta\right\}$ such that $x^{T} b>\beta$ and $x^{T} z<\beta$ for each $z \in \mathscr{C}$.
Show that $\beta \geqslant 0$ (on which side is 0 ?) and $x^{T} A \leqslant 0$ hold.
3. Next consider the linear program

$$
\max \left\{b^{T} x: x \in \mathbb{R}^{n}, A^{T} x \leqslant 0,-1 \leqslant x \leqslant 1\right\} .
$$

Show that this linear program is feasible and bounded ($b \notin \mathscr{C}!$) with optimal solution value >0 and interpret the optimal solution as a hyperplane, separating b from \mathscr{C}. Conclude that there is an optimal vertex solution. How many vertex solutions are there at most?
4. Conclude that \mathscr{C} is polyhedral, i.e. there exists a matrix $C \in \mathbb{R}^{m \times n}$ with $\mathscr{C}=\{x: C x \leqslant 0\}$. How does the matrix $C \in \mathbb{R}^{m \times n}$ look like. How many rows does it have at most.
5. Let $\max \left\{c^{T} x: A x \leqslant b, x \in \mathbb{Z}^{n}\right\}$ be an integer program with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$. Show that this integer program is unbounded if and only if the linear programming relaxation (the condition $x \in \mathbb{Z}^{n}$ is replaced by $x \in \mathbb{R}^{n}$) is unbounded and the integer program is feasible.
6. Solve the following knapsack problem by drawing the corresponding directed acyclic graph:

$$
\max 12 x_{1}+10 x_{2}+13 x_{3}+8 x_{4}
$$

s.t.

$$
\begin{array}{r}
3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leqslant 10 \\
x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\} .
\end{array}
$$

