Integer Optimization Problem Set 3

To be discussed on March 13

1. Let $P, Q \subseteq \mathbb{R}^n$. Show that

 $\operatorname{conv}(P) \oplus \operatorname{conv}(Q) = \operatorname{conv}(P \oplus Q).$

Let *P* and *C* be subsets of \mathbb{R}^n . Show that one has

 $P_I \oplus C_I \subseteq (P \oplus C)_I$.

Does equality hold?

The following exercises are deriving the Minkowski-Weyl theorem from *linear programming* theory. Recall the following fact from linear programming. If $\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\}$ is feasible and bounded and if $\operatorname{rank}(A) = n$, then there exists an optimal *vertex* solution x^* . I.e., x^* satisfies *n* linear inequalities - whose left-hand-side vectors are a basis of \mathbb{R}^n - with equality.

2. Let $A \in \mathbb{R}^{n \times m}$, consider the finitely generated cone $\mathscr{C} = \{A\lambda : \lambda \in \mathbb{R}_{\geq 0}^m\}$ and let $b \notin \mathscr{C}$. With the separation theorem, there exists a hyperplane $\{y : x^T y = \beta\}$ such that $x^T b > \beta$ and $x^T z < \beta$ for each $z \in \mathscr{C}$.

Show that $\beta \ge 0$ (on which side is 0?) and $x^T A \le 0$ hold.

3. Next consider the linear program

$$\max\{b^T x : x \in \mathbb{R}^n, A^T x \leq 0, -1 \leq x \leq 1\}.$$

Show that this linear program is feasible and bounded ($b \notin \mathscr{C}$!) with optimal solution value > 0 and interpret the optimal solution as a hyperplane, separating *b* from \mathscr{C} . Conclude that there is an optimal vertex solution. How many vertex solutions are there at most?

- 4. Conclude that \mathscr{C} is polyhedral, i.e. there exists a matrix $C \in \mathbb{R}^{m \times n}$ with $\mathscr{C} = \{x : Cx \leq 0\}$. How does the matrix $C \in \mathbb{R}^{m \times n}$ look like. How many rows does it have at most.
- 5. Let $\max\{c^T x : Ax \leq b, x \in \mathbb{Z}^n\}$ be an integer program with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$. Show that this integer program is unbounded if and only if the linear programming relaxation (the condition $x \in \mathbb{Z}^n$ is replaced by $x \in \mathbb{R}^n$) is unbounded and the integer program is feasible.
- 6. Solve the following knapsack problem by drawing the corresponding directed acyclic graph:

$$\max 12x_1 + 10x_2 + 13x_3 + 8x_4$$

s.t.

$$3x_1 + 5x_2 + 2x_3 + 4x_4 \leq 10$$
$$x_1, x_2, x_3, x_4 \in \{0, 1\}.$$