
École Polytechnique Fédérale de Lausanne
Lausanne | Vaud | Switzerland

Institute of Mathematics

College of Basic Sciences

Week 4: Notes
— MATH-504 | Integer Optimisation | (Spring 2023)

By:

Edmund Hofflin

Email:
edmund.hofflin@epfl.ch
Contact me if there are any mistakes or issues.

Professor:

Prof. Friedrich Eisenbrand

March 2023

mailto:edmund.hofflin@epfl.ch

3 Dynamic Programming I

Definition 3.1 (Knapsack Problem). The Knapsack Problem is as follows: Given n ∈ N items, each with
weight ai ∈ Z+ and profit pi ∈ Z+, and a maximum capacity D ∈ Z+, we wish to find S ⊆ [n] such that∑

i∈S ai ≤ D and
∑

i∈S pi is maximal. That is, we wish to find the collection of items that are below the
maximum capacity and yield the most profit.

Proposition 3.1 (Knapsack as IP). All knapsack problems can be represented as IPs.

Proof. By construction:

max p⊤x

s.t a⊤x ≤ D,x ∈ {0, 1}n

where p, a ∈ Nn and D ∈ N. xi is active if item i is chosen.

Example 3.1 (Simple Knapsack). The following is a Knapsack problem:

max 10x1 + 5x2 + 8x3

s.t 3x1 + 2x2 + x3 ≤ 5,x ∈ {0, 1}3

Proposition 3.2 (Acyclic Graphs and Knapsacks). For a given knapsack problem, an assignment of x ∈ Rn

corresponds to a path in the acyclic graph

Figure 1: Acyclic Graph for Knapsack Problem

where (0, 0) is the initial node and all final nodes are (n,w) for some w ≤ D. A path from the initial node to
a final node corresponds to a selection of items with summed weight not larger than D. Note that |V | ≤ nD
in this graph.

Proposition 3.3 (Optimal Solutions are Longest Paths). For a given knapsack problem, an optimal solution
x∗ ∈ Rn corresponds to a longest path in the acyclic graph.

Example 3.2 (Simple Knapsack Graph). For the knapsack problem in Example 3.1, the corresponding acyclic
graph is:

1

Figure 2: Acyclic Graph for Simple Knapsack

The longest path is clearly x =
(
1 0 1

)⊤
, with total weight 4 and profit 18.

Proposition 3.4 (Solving Knapsack through Generating Table). Let A : [n]× [D]→ N be defined by

A (i, w) =

{
max {A (i− 1, w) , A (i− 1, w − ai) + pi} , w − ai ≥ 0

A (i− 1, w) , otherwise

where A (0, 0) = 0. Generating A (n,D) is O (nD).

Proof. Generating A (n,D) corresponds to moving backwards through the acyclic graph to find
the longest path.

Proposition 3.5 (Solving Knapsack through Generating Table Alternative). Let B : [n] × N → [D] be
defined through

B (i, p) =

{
min {B (i− 1, p) , B (i− 1, p− pi) + wi} , p− pi > 0

B (i− 1, p) , otherwise

where B (0, 0) = 0. Generating B (n, npmax) is O (n2 ∥p∥∞), where pmax = ∥p∥∞.

Proof. Generating B (n, npmax) corresponds to finding the minimum weight for a subset of [n]
to achieve profit p.

Definition 3.2 (Pseudo-Polynomial). A algorithm has Pseudo-Polynomial complexity with respect to un-
encoded (i.e. not in binary) input n iff it is O (p (n)) for some polynomial p. Note that when encoded, a
pseudo-polynomial algorithm has exponential complexity with respect to the length of the input.

Example 3.3 (Knapsack Complexity). Propositions 3.4 and 3.5 show that Knapsack has pseudo-polynomial
complexity with respect to D and pmax.

Theorem 3.1 (Approximating Knapsack in Polynomial Time). Suppose p,w ∈ Zn and D define a standard
Knapsack problem with optimal solution x∗. Given ε > 0, we can find x̄ ∈ {0, 1}n such that

p⊤x̄ ≥ (1− ε)p⊤x∗

in polynomial time.

Proof. Firstly, for all i ∈ [n], if wi > D then item i can never be selected. So we can remove the

2

item without changing the optimal solution. Therefore, without loss of generality, assume that
all wi ≤ D for i ∈ [n].

We will now construct a new rounded profits vector p̄:

p̄i =
⌈pi

κ

⌉
, ∀i ∈ [n]

where κ = pmaxε
n

. Note that

p̄i =

⌈
pin

pmaxε

⌉
≤
⌈n
ε

⌉
Furthermore, if n ≥ 2 and ε ≤ 1

2
, then p̄i ≤ 2n

ε
for all i ∈ [n].

We can run the algorithm from Solving Knapsack through Generating Table Alternative with p̄

instead of p to generate a solution x̄ in O
(

n3

ε

)
time. Note that this is polynomial complexity

with respect to all inputs. So we only need to show that x̄ is an ε-approximation. So consider:

p⊤x̄ = (κp̄− k)⊤ x̄, where k ∈ [κ]n

= κp̄⊤x̄− k⊤x̄

≥ κp̄⊤x∗ − k⊤x̄ (3.1)

= κp̄⊤x∗ − k⊤x∗ + k⊤x∗ − k⊤x̄

= (κp̄− k)⊤ x∗ + k⊤ (x∗ − x̄)

= p⊤x∗ + k⊤ (x∗ − x̄)

≥ p⊤x∗ − κn (3.2)

= p⊤x∗ − pmaxε

≥ (1− ε)p⊤x∗ (3.3)

where Inequality (3.1) follows from x̄ being the optimal solution for the Knapsack problem
with profits p̄, Inequality (3.2) follows from (x∗ − x̄) ∈ {0,±1}n and max k = κ, and the
Inequality (3.3) follows from pmax being an obtainable solution given that pi ≤ D for all i ∈ [n].
Therefore, x̄ is an ε-approximation that is computable in polynomial time, as required.

Corollary 3.1 (Approximating IPs via Rounding). All integer programs of the form

max c⊤x

s.t Ax ≤ b, x ∈ {0, 1}n

with A ∈ Nm×n and b ∈ Nn for which there is a pseudo-polynomial time algorithm can be can be approximated
in polynomial time within ε > 0 accuracy.

Proof. Repeat the proof for the Approximating Knapsack in Polynomial Time Theorem, as it
only dependent upon the problem form and existence of a pseudo-polynomial time algorithm.

4 Encodings

Definition 4.1 (Size). Given a ∈ Z, the Size of a is size (a) = log2 (max {|a| , 1}) (maximum is needed for
the 0 case). The binary encoding length of an integer a is 1 + ⌈size (a)⌉, where the first bit is the sign.

For v ∈ Zn, size (v) =
∑

i∈[n] size (vi). Note that size (v) ≤ n size (∥v∥∞) for all v ∈ Zn.

3

Example 4.1 (Simple Sizes). If a = 5, then size (a) = log2 (max {|5| , 1}) ≈ 2.3. We can verify that 1 +
⌈size (a)⌉ = 4 is the binary encoding length through manual conversion: 5 = ⟨1101⟩2 (recall the first bit is
the sign bit).

If b = −10, then size (b) = log2 (max {|−10| , 1}) ≈ 3.3. We can verify that 1 + ⌈size (a)⌉ = 5 is the binary
encoding length through manual conversion: −10 = ⟨01010⟩2.

Example 4.2 (Polynomial Algorithm Producing Exponential Sized Output). Suppose an algorithm carries
out a polynomial number (with respect to the size of the problem) of arithmetic operations. Will the output
always be polynomial in size? Unfortunately, no.

Consider the following algorithm. Its only input is a ∈ {0, 1}n, so problem size is Θ (n). It starts with
x = 2, then x← x2 for each ai = 1, and finally outputs x: that is, beginning with 2, it will square the value
for every active component of a. If a = 1, then the output is 22

n
. So output = 2n. So despite a polynomial

number of arithmetic operations, this algorithm has an output with exponential size with respect to its
input size.

Theorem 4.1 (Hadamard Bound). For A ∈ Rn×n, det (A) ≤
∏

i∈[n] ∥ai∥2, where A =
(
a1 . . . an

)
.

Proof. The Gram-Schmidt procedure takes as input {b1, . . . ,bn} which span Rn and outputs a
linearly independent basis of Rn {b∗

1, . . . ,b
∗
n}, i.e. b∗

i ⊥ b∗
j for i ̸= j, such that

span ({bi : i ∈ [k]}) = span ({b∗
i : i ∈ [k]})

for k ∈ [n]. The Gram-Schmidt process produces this special basis recursively:

b∗
1 = b1

b∗
i+1 = bi+1 −

∑
j∈[i]

projb∗
j
(bi+1)

where proja (b) = ⟨a,b⟩
⟨b,b⟩b is the orthogonal projection operator. Let µi,j = − projb∗

j
(bi+1) for

j ∈ [i] and i ∈ [n]. If B and B∗ are the matrices with rows bi and b∗
i , respectively, then

Gram-Schmidt sets up the following matrix equation:

B = B∗

1 µ2,1 . . . µn,1

0
.

...
...

. µn,n−2

0 . . . 0 1

i.e. the change of basis from b∗

i ’s to bi is done through a upper-triangular matrix with diagonals
1 and the µi,j’s above the diagonal. Let U be this upper triangular matrix. Now consider:

det
(
BTB

)
= det

(
(B∗T)T

)
(B∗T)

det (B)2 = det (T)2 det
(
B∗TB∗)

= 12 × det
(
B∗TB∗)

= det

∥b

∗
1∥

2
2 ⋆

. . .

⋆ ∥b∗
n∥

2
2

≤
∏
i∈[n]

∥b∗
i ∥

2
2

4

And so, we have that:

det (B) ≤
∏
i∈[n]

∥b∗
i ∥2

as required.

Corollary 4.1 (Size of Determinants). For A ∈ Zn×n with det (A) ̸= 0 and max {|Ai,j| : i, j ∈ [n]} =
Amax ≤ ∆, then size (det (A)) ≤ n (log2 (∆) + log2 (n)).

Proof. We apply the Hadamard Bound:

size (det (A)) = log2 (max {|det (A)| , 2})

≤ log2

max

∏
i∈[n]

∥ai∥2 , 2

≤ log2

max

∏
i∈[n]

∆
√
n, 2

= log2
(
∆nn

n
2

)
≤ n (log2 (∆) + log2 (n))

as required.

Theorem 4.2 (Linear Equations Produce Polynomial Solutions). For A ∈ Zn×n with det (A) ̸= 0 and
b ∈ Zn such that Amax,bmax ≤ ∆, the output x∗ ∈ Qn which solves the linear equation Ax∗ = b has size
polynomial with respect to the input size.

Proof. We can use the adjunct of A, Ã, to represent x∗:

x∗ = A−1b =
Ã

det (A)
b

Furthermore, we know that Ãmax = maxi,j Mi,j, where Mi,j is the i, j-th minor of A. Let aj

represent a with the j-th component removed. Consider:

Mi,j ≤
∏

i∈[n]\{i}

∥∥ai
j
∥∥
2
≤

∏
i∈[n]\{i}

∥ai∥2 ≤
∏
i∈[n]

∥ai∥2

where the first inequality follows from the Hadamard Bound, the second inequality follows from∥∥aj
∥∥
2
≤ ∥a∥2 for all a ∈ Zn, and the final inequality follows from ∥a∥2 ≥ 1 for all a ∈ Zn except

a = 0 but no ai = 0 as det (A) ̸= 0. Therefore, we have that:

Ãmax ≤
∏
i∈[n]

∥ai∥2 ≤ ∆nn
n
2

where the second inequality follows from the same reasoning as done in the Size of Determi-
nants Corollary. Therefore:∥∥∥Ãb∥∥∥

∞
≤ nÃmaxbmax ≤ n

(
∆nn

n
2

)
∆ = ∆n+1n

n+2
2

Given this, we can infer that size
(
Ãb
)
≤ n (n+ 1) (log2 (∆) + log2 (n)). Using the Size of

Determinants Corollary, we now know that the numerator and denominator for a representation

5

of x∗ both has size polynomial in the input, so x∗ has a representation with size polynomial in
the input.

Theorem 4.3 (Polynomial Time Determinant Algorithm). Given A ∈ Zn×n with Amax ≤ ∆, the determi-
nant can be computed in polynomial time.

Proof. Note this is merely a proof sketch.

Let m = ∆nn
n
2 , which is larger than |det (A)| by the reasoning done in Corollary Size of Deter-

minants. Let p1, . . . , pk denote the smallest k primes such that
∏

i∈[k] pi ≥ 2m. For all i ∈ [k],

we can compute det (A) over Zpi in polynomial time using the Gaussian elimination. Given
the isomorphism Z∏

i∈[k] pi
∼= Zp1 × . . .Zpk and |det (A)| ≤ m ≤ 1

2

∏
i∈[k] pi, we use the Chinese

Remainder theorem to find det (A).

Now we need to ensure that we can find p1, . . . , pk in polynomial time. Let π (l) = |{p ∈ [l] : p is prime}|,
i.e number of primes less than or equal to l. The Prime Number Theorem implies that π (l) ≥
C l

log(l)
for some constant C ∈ R+, which we can weaken to π (l) ≥ C

√
l. Additionally, the

product of k primes must satisfy
∏

i∈[k] pi ≥ 2k. Putting these bounds together, we only need

to search up to L =
(

log2(2m)
C

)2
to find the required primes: using the weaker bound, there will

be at least log2 (2m) primes less than L and the product of these primes will necessarily be at
minimum 2m. Therefore, we can use the Sieve of Eratosthenes to find these primes less than L
in polynomial time with respect to L. Finally, we note that

L =

(
log2 (2m)

C

)2

=

(
1 + log2

(
∆nn

n
2

)
C

)2

≤
(
1 + n (log2 (∆) + log2 (n))

C

)2

≤
(
1 + n∆+ n2

C

)2

is polynomial in the input size. So overall, we can compute det (A) is polynomial time.

Definition 4.2 (Forms). An IP of the form

max cTx

s.t Ax = b,x ∈ Z+
n

with A ∈ Zm×n and b ∈ Zm is in Equation Standard Form. On the other hand, an IP of the form

max cTx

s.t Ax ≤ b,x ∈ Zn

with A ∈ Zm×n and b ∈ Zm is in Inequality Standard Form. Note that Equality requires positive integer
vectors x ∈ Z+

n where as Inequality allows all integer vectors x ∈ Zn.

Proposition 4.1 (Equivalences between Standard Forms). An IP with n variables and m inequalities in
Inequality Standard Form is equivalent to an IP with 2n+m variables and m equalities in Equality Standard
Form.

6

Proof. We can explicitly construct the equivalences:

max c⊤x max c⊤ (x+ − x−)

s.t Ax ≤ b ≡ s.t A (x+ − x−) ≤ b

x ∈ Zn x+,x− ∈ Z+
n

max c⊤ (x+ − x−)

≡ s.t Ax+ − Ax− + Imy = b

x+,x−,y ∈ Z+
n

where y is introduced as a slack variable.

Example 4.3 (Switching between Standard Forms). We present a problem in its equivalent Equality and
Inequality Standard Forms:

max

(
2
1

)⊤

x max

2
1
−2
−1

⊤(

x+

x−

)

s.t

(
3 2
1 3

)
x =

(
5
3

)
≡ s.t

(
3 2 −3 −2 1 0
1 3 −1 −3 0 1

)x+

x−
y

 =

(
5
3

)
x ∈ Z2 x+,x−,y ∈ Z+

2

Note that the Equality form requires more variables to ensure the positivity and equalities.

Theorem 4.4 (Bound on Solution for Equality Standard Form). Suppose we have an IP in Equality Stan-
dard Form

max c⊤x

s.t Ax = b,x ∈ Z+
n

where A ∈ Zm×n and b ∈ Zm such that Amax,bmax ≤ ∆ ∈ R+. If the IP is feasible, then the optimal solution
x∗ ∈ Zn satisfies ∥x∗∥∞ ≤ (m∆)5m and size (x∗) ∈ O

(
(nm log (∆))2

)
.

Proof. TODO: Apparently future homework problem covers the first part.

Finally, given that ∥x∗∥∞ ≤ (m∆)5m, we can immediately infer that

size (x∗) ≤ n size (∥x∗∥∞)

= n log2
(
max

{
(m∆)5m , 2

})
= 5mn log2 (m∆)

≤ (mn log2 (∆))2

as required.

Theorem 4.5 (HINTED BUT YET TO BE DISCUSSED). SOMETHING ALONG THESE LINES: Either
let A ∈ Zm×n and b ∈ Zm, xor a ∈ Zm′

and β ∈ Z. Given either option, we can construct the equivalence:

max 1⊤x 1⊤x

s.t Ax = b ≡ a⊤x = β

x ∈ {0, 1}n x ∈ {0, 1}n

7

Example 4.4 (Optimality of Pseudo-Polynomial Algorithm for Knapsack). By Bound on Solution for Equal-
ity Standard Form Theorem, we have the following equivalences between problems:

max 1⊤x max 1⊤x

s.t Ax = b ≡ s.t a⊤x = β

x ∈ {0, 1}n x ∈ {0, 1}n

max 1⊤x

≡ s.t a⊤x ≤ β

x ∈ {0, 1}n

for some pairs of A ∈ Zm×n,b ∈ Zm and a ∈ Zm′
and β ∈ Z. The final problem is a Knapsack problem with

p = w = a and D = β. Therefore, if we could solve Knapsack in polynomial time (not pseudo-polynomial
time), then we could the first general feasibility problems in polynomial time as well. This is unlikely, so
this suggests that Knapsack is pseudo-polynomial at minimal.

8

	Dynamic Programming I
	Encodings

