
Discrete Optimization 2023 (EPFL):
Problem set of week 3 - Solutions

March 7, 2023

1. For any given −→a ∈ Rn and any b ∈ R prove algebraically (from the
algebraic definitions) that the half-space {−→x | ⟨−→x ,−→a ⟩ ≤ b} is convex.

Solution. Assume that both −→x and −→y belong to the half-space. Let
0 ≤ λ ≤ 1 and consider λ−→x + (1− λ)−→y . We need to show that it also
belongs to the same half-space.

Indeed,

⟨λ−→x + (1− λ)−→y , a⟩ = λ⟨−→x ,−→a ⟩+ (1− λ)⟨−→y ,−→a ⟩
≤ λb+ (1− λ)b = b

Notice that it is crucial in the inequality that neither of λ, nor (1− λ)
is negative.

2. LetQ be the quadrangle in the plane whose vertices are (4, 3), (3, 4), (2, 3),

and (3, 2). Find a matrix A and a vector
−→
b such thatQ = {−→v = (x, y) |

A−→v ≤
−→
b }.

Solution.

The idea of the exercise is to develop an intuition for hyperplanes. In
this sense a strategy to solve the exercise is to draw the quadrangle and
figure out the conditions on the hyperplanes (here lines) between the
adjacent vertices of the quadrangle and the induced halfspace descrip-
tions. For the adjacent vertices (2, 3) and (3, 2) the induced halfspace
is given by x + y ≥ 5 for (2, 3) and (3, 4) it is y ≤ x + 1 for (3, 4) and
(4, 3) it is x+ y ≤ 7 and finally for (4, 3) and (3, 2) it is y ≥ x− 1.

Plugging this into the desired matrix form leads to:
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A =


1 1
1 −1
−1 −1
−1 1

 b =


7
1
−5
1


A way to prove that A and b are indeed a solution of the problem, one
can check that each vertex is the intersection of each two of the edges
induced by the inequalities.

3. Let B be the box in R3 defined by
B = {−→v = (x, y, z) | 1 ≤ x ≤ 5, − 2 ≤ y ≤ 6, 0 ≤ z ≤ 2}. Find a

matrix A and a vector
−→
b such that B = {−→v = (x, y, z) | A−→v ≤

−→
b }.

Solution. The box is defined by the intersection of the following 6
hyperplanes:

x ≤ 5, −x ≤ −1, y ≤ 6, −y ≤ 2, z ≤ 2, −z ≤ 0.

Put them into the matrix form we get:

A =


1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 , b =


5
−1
6
2
2
0


4. Let P be the three dimensional pyramid with vertices (1, 1,−6), (1, 3,−4),

(−1,−2, 5), and (3, 5, 1). Find −→c ∈ R3 such that the function
⟨−→c , (x, y, z)⟩ attains its maximum on P precisely at the vertex (1, 3,−4).

Solution. There are infinitely many solutions here. One simple solu-
tion (perhaps the simplest) is to take c that defines a hyperplane parallel
to the hyperplane through the three vertices (1, 1,−6), (−1,−2, 5), and
(3, 5, 1).

The direction of c should point to the same halfspace to which (1, 3,−4)
belongs. Therefore, we first find a vector perpendicular to both (1, 1,−6)−
(−1,−2, 5) and (3, 5, 1)− (−1,−2, 5).

One may want to take the vector (65,−36, 2). Then the three vertices
(1, 1,−6), (−1,−2, 5), and (3, 5, 1) belong to the hyperplane {⟨(x, y, z), (65,−36, 2)⟩ =
17}.
We notice that {⟨(1, 3,−4), (65,−36, 2)⟩ = −51 < 17. This means that
−→c = −(65,−36, 2) = (−65, 36,−2) is a good choice.
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