Discrete Optimization 2023 (EPFL): Problem set of week 3

March 1, 2023

1. For any given $\vec{a} \in \mathbb{R}^{n}$ and any $b \in \mathbb{R}$ prove algebraically (from the algebraic definitions) that the half-space $\{\vec{x} \mid\langle x, a\rangle \leq b\}$ is convex.
2. Let Q be the quadrangle in the plane whose vertices are $(4,3),(3,4),(2,3)$ and (3,2). Find a matrix A and a vector \vec{b} such that $Q=\{\vec{v}=(x, y) \mid$ $A \vec{v} \leq \vec{b}\}$.
3. Let B be the box in \mathbb{R}^{3} defined by $B=\{\vec{v}=(x, y, z) \mid 1 \leqq x \leq$ $5, \quad-2 \leq y \leq 6, \quad 0 \leq z \leq 2\}$. Find a matrix A and a vector \vec{b} such that $B=\{\vec{v}=(x, y, z) \mid A \vec{v} \leq \vec{b}\}$.
4. Let P be the three dimensional pyramid with vertices $(1,1,-6),(1,3,-4)$, $(-1,-2,5)$, and $(3,5,1)$. Find $\vec{c} \in \mathbb{R}^{3}$ such that the function $\langle\vec{c},(x, y, z)\rangle$ attains its maximum on P precisely at the vertex $(1,3,-4)$.
