Discrete Optimization 2023 (EPFL): Problem set of week 3

March 1, 2023

- 1. For any given $\overrightarrow{a} \in \mathbb{R}^n$ and any $b \in \mathbb{R}$ prove algebraically (from the algebraic definitions) that the half-space $\{\overrightarrow{x} \mid \langle x, a \rangle \leq b\}$ is convex.
- 2. Let Q be the quadrangle in the plane whose vertices are (4, 3), (3, 4), (2, 3) and (3, 2). Find a matrix A and a vector \overrightarrow{b} such that $Q = \{\overrightarrow{v} = (x, y) \mid A \overrightarrow{v} \leq \overrightarrow{b}\}.$
- 3. Let B be the box in \mathbb{R}^3 defined by $B = \{ \overrightarrow{v} = (x, y, z) \mid 1 \leq x \leq 5, -2 \leq y \leq 6, 0 \leq z \leq 2 \}$. Find a matrix A and a vector \overrightarrow{b} such that $B = \{ \overrightarrow{v} = (x, y, z) \mid A \overrightarrow{v} \leq \overrightarrow{b} \}$.
- 4. Let P be the three dimensional pyramid with vertices (1, 1, -6), (1, 3, -4), (-1, -2, 5), and (3, 5, 1). Find $\overrightarrow{c} \in \mathbb{R}^3$ such that the function $\langle \overrightarrow{c}, (x, y, z) \rangle$ attains its maximum on P precisely at the vertex (1, 3, -4).