Discrete Optimization 2023 (EPFL): Problem set of week 6

March 30, 2023

1. Let A be an $m \times n$ matrix with rows a_1, \ldots, a_m and let $b \in \mathbb{R}^m$ be given. Consider the polyhedron P defined by $A\vec{x} \leq \vec{b}$.

Assume that $I = \{1, 2, ..., n\}$ is a basis, but not a feasible basis. Denote by Q the point that is the intersection of the n hyperplanes $\{\langle a_i, x \rangle = b_i\}$ for i = 1, ..., n.

Prove that for every $\lambda_1, \ldots, \lambda_n > 0$ there is α such that the hyperplane $H = \{ \langle \sum_{i=1}^n \lambda_i a_i, x \rangle = \alpha \text{ separates } Q \text{ and } P. \}$

2. Let P be a (bounded) polytope in \mathbb{R}^3 with vertices v_1, \ldots, v_k . Let $\vec{c} \in \mathbb{R}^3$ be such that $\langle c, v_i \rangle \neq \langle c, v_j \rangle$ for every $i \neq j$. Assume that P is a *simple* polytope, in the sense that every vertex has precisely 3 neighbors.

We say that a vertex v of P is of type 1 if precisely two of its three neighbors have their scalar product with c larger than the scalar product of v and c. We say that v is of type 2 if precisely two of its three neighbors have their scalar product with c smaller than the scalar product of v with c.

Show that the number of vertices of type 1 is always equal to the number of vertices of type 2. Conclude that every simple polytope in \mathbb{R}^3 must have an even number of vertices.

Is it true also in dimensions 2, 4, 5, 6, 7?

hint: observe that a vertex of type 1 is the "lowest" vertex of precisely one face of dimension 2 of P. A vertex of type 2 is the "highest" vertex of precisely one face of P of dimension 2.

Recall that K is a convex set if for every $x, y \in K$ and every $0 \le \lambda \le 1$ we have $\lambda x + (1 - \lambda)y \in K$.

- 3. Let P be a set of vectors (points) in \mathbb{R}^n . The *cone* generated by P is the set of all finite sums $\sum a_i p_i$ such that $a_i \geq 0$ for every i and $p_i \in P$. Show that the cone generated by a set of points is always a convex set.
- 4. Let K be a convex set and assume $p_1, \ldots, p_t \in K$. Show that $\sum \lambda_i p_i \in K$ for every positive $\lambda_1, \ldots, \lambda_t$ whose sum is equal to 1,

Hint: use induction on t. For t = 2 it is just the definition of being convex.

5. Given a set P of points, the *convex hull* of P is the set of all finite sums of the form $\sum \lambda_i p_i$ where $\sum \lambda_i = 1$ and the λ_i 's are all nonnegative and the p_i 's are points in P. Show that the convex hull of a set P of points is a convex set. Conclude it is the smallest convex set containing P.