Discrete Optimization 2023 (EPFL): Problem set of week 6

March 30, 2023

1. Let A be an $m \times n$ matrix with rows a_{1}, \ldots, a_{m} and let $b \in \mathbb{R}^{m}$ be given. Consider the polyhedron P defined by $A \vec{x} \leq \vec{b}$.

Assume that $I=\{1,2, \ldots, n\}$ is a basis, but not a feasible basis. Denote by Q the point that is the intersection of the n hyperplanes $\left\{\left\langle a_{i}, x\right\rangle=b_{i}\right\}$ for $i=1, \ldots, n$.
Prove that for every $\lambda_{1}, \ldots, \lambda_{n}>0$ there is α such that the hyperplane $H=\left\{\left\langle\sum_{i=1}^{n} \lambda_{i} a_{i}, x\right\rangle=\alpha\right.$ separates Q and P.
2. Let P be a (bounded) polytope in \mathbb{R}^{3} with vertices v_{1}, \ldots, v_{k}. Let $\vec{c} \in \mathbb{R}^{3}$ be such that $\left\langle c, v_{i}\right\rangle \neq\left\langle c, v_{j}\right\rangle$ for every $i \neq j$. Assume that P is a simple polytope, in the sense that every vertex has precisely 3 neighbors.
We say that a vertex v of P is of type 1 if precisely two of its three neighbors have their scalar product with c larger than the scalar product of v and c. We say that v is of type 2 if precisely two of its three neighbors have their scalar product with c smaller than the scalar product of v with c.
Show that the number of vertices of type 1 is always equal to the number of vertices of type 2. Conclude that every simple polytope in \mathbb{R}^{3} must have an even number of vertices.
Is it true also in dimensions $2,4,5,6,7$?
hint: observe that a vertex of type 1 is the "lowest" vertex of precisely one face of dimension 2 of P. A vertex of type 2 is the "highest" vertex of precisely one face of P of dimension 2 .

Recall that K is a convex set if for every $x, y \in K$ and every $0 \leq \lambda \leq 1$ we have $\lambda x+(1-\lambda) y \in K$.
3. Let P be a set of vectors (points) in \mathbb{R}^{n}. The cone generated by P is the set of all finite sums $\sum a_{i} p_{i}$ such that $a_{i} \geq 0$ for every i and $p_{i} \in P$. Show that the cone generated by a set of points is always a convex set.
4. Let K be a convex set and assume $p_{1}, \ldots, p_{t} \in K$. Show that $\sum \lambda_{i} p_{i} \in$ K for every positive $\lambda_{1}, \ldots, \lambda_{t}$ whose sum is equal to 1 , Hint: use induction on t. For $t=2$ it is just the definition of being convex.
5. Given a set P of points, the convex hull of P is the set of all finite sums of the form $\sum \lambda_{i} p_{i}$ where $\sum \lambda_{i}=1$ and the λ_{i} 's are all nonnegative and the p_{i} 's are points in P. Show that the convex hull of a set P of points is a convex set. Conclude it is the smallest convex set containing P.

