Discrete Optimization 2023 (EPFL): Problem set of week 4

March 8, 2023

1. Let A be the matrix
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right)$.
Let $\vec{b}=(1,1,1,1,1)$ and let $P=\left\{\vec{v}=(x, y, z) \in \mathbb{R}^{3} \mid A \vec{v} \leq \vec{b}\right\}$. Show that P is a polytope and find all its vertices.
What is the maximum value of $x+2 y+3 z$ on P ?
2. Find a hyperplane separating the ellipsoid $E=\left\{(x, y, z) \left\lvert\, 2 x^{2}+\frac{2 y^{2}}{4}+\right.\right.$ $\left.\frac{2 z^{2}}{9} \leq 2\right\}$ from the point $p=(1,2,3)$.
3. Let A be the $2^{n} \times n$ matrix whose rows are all the 2^{n} possible combinations of 1 and -1 . Let $\vec{b}=(1,1,1, \ldots, 1) \in \mathbb{R}^{2^{n}}$.
Show that $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ is a polytope and find all its vertices.
4. Suppose P is a polytope in \mathbb{R}^{n}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be any linear map. Show that $T(P)$ is a polytope in \mathbb{R}^{k}.
