Discrete Optimization 2023 (EPFL): Problem set of week 5

March 23, 2023

1. Consider the simplex (tetrahedron) P in \mathbb{R}^{3} whose vertices are $(1,0,0)$, $(-1,1,0),(-1,-1,0)$, and $(0,0,1)$. Find all the vectors \vec{c} such that the maximum of $\langle\vec{c}, \vec{x}\rangle$ on P is at the vertex $(0,0,1)$.
2. Let S be the set of all 2^{n} vectors with coordinates that are equal either to +1 or -1 . Let P be the set of all linear combinations of the vectors in S with coefficients greater than or equal to 0 and smaller than or equal to 1 . Show that P is convex and find at least 3 distinct vertices of P.
3. Let P be the tetrahedron whose vertices are $(1,2,3),(2,1,-1),(1,1,0)$, and $(2,1,-3)$. Find a hyperplane H that supports P and intersects P at the edge with vertices $(1,2,3)$ and $(1,1,0)$.
4. Let $\vec{a}_{1}, \ldots, \vec{a}_{n+1}$ be $n+1$ vectors in \mathbb{R}^{n} such that every n of them are linearly independent. Let $\vec{b} \in \mathbb{R}^{n+1}$ be a vector with positive coordinates. Let A be the matrix whose rows are a_{1}, \ldots, a_{n+1}. Show that if $\sum_{i=1}^{n+1} \vec{a}_{i}=0$, then the polyhedron $P=\{x \mid A x \leq b\}$ is bounded and not empty.
5. (Extra practising exercise - check your solutions with the computer)

Find all the vertices of P that is defined by the following system of inequalities.

$$
A=\left(\begin{array}{ccc}
0 & 0 & -1 \\
1 & 1 & 1 \\
-1 & 1 & 1 \\
0 & -1 & 1 \\
1 & 1 & 10
\end{array}\right) \vec{x} \leq\left(\begin{array}{c}
0 \\
1 \\
1 \\
1 \\
\frac{1}{3}
\end{array}\right)
$$

