Discrete Optimization 2023 (EPFL): Problem set of week 4

March 21, 2023

1. Let A be the matrix
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ -1 & -1 & -1\end{array}\right)$.
Let $\vec{b}=(1,1,1,1,1)$ and let $P=\left\{\vec{v}=(x, y, z) \in \mathbb{R}^{3} \mid A \vec{v} \leq \vec{b}\right\}$. Show that P is a polytope and find all its vertices.
What is the maximum value of $x+2 y+3 z$ on P ?
Solution. P is clearly a polyhedron because it is the intersection of the halfspaces defined by the inequalities. To see that it is bounded (and therefore, a polytope) observe that by the first three rows of A we get for every point $(x, y, z) \in P$ that $x, y, z \leq 1$. Moreover, $-x-y-z \leq 1$ and consequently $x \geq-x-y-1 \geq-3$. Similarly, $y, z \geq-3$. This shows that P is bounded.

To find the vertices of P we notice that three linearly independent rows of A are every three that do not contain the last two rows together. This leaves 7 options. These are the first three rows, the forth row and any two of the first three (there is a symmetry here) and finally, the last row and any two of the first three (here too there is symmetry).
The first three rows of A suggest the vertex $(1,1,1)$. However, this point is not feasible, as it does not satisfy the inequality of the forth line of A.
Considering the forth row of A and the first two, we get the point $(1,1,-1)$. This is a feasible point and therefore a vertex. Similarly, $(1,-1,1)$ and $(-1,1,1)$ are vertices.

Considering the fifth row of A and the first two, we get the point $(1,1,-3)$. This is a feasible point and therefore a vertex. Similarly, $(1,-3,1)$ and $(-3,1,1)$ are vertices.
These are all the six vertices of P.
The objective function $x+2 y+3 z$ is maximized on a vertex of P. The vertex yielding the maximal objective value among all vertices is $(-1,1,1)$.
2. Find a hyperplane separating the ellipsoid $E=\left\{(x, y, z) \left\lvert\, 2 x^{2}+\frac{2 y^{2}}{4}+\right.\right.$ $\left.\frac{2 z^{2}}{9} \leq 2\right\}$ from the point $p=(1,2,3)$.
Solution. We present a systematic solution (not necessarily the shortest). The linear transformation $T(x, y, z)=(x, y / 2, z / 3)$ takes E to the unit ball in \mathbb{R}^{3}. T takes the point $(1,2,3)$ to the point $(1,1,1)$. It is not difficult to find a hyperplane separating the unit ball from $(1,1,1)$. For example $H=\{x+y+z=2\}$ will do (why? - one can change 2 with any number strictly between $\sqrt{3}$ and 3).
Now we only need to apply the inverse map T^{-1} on H to get a separating hyper-plane. T^{-1} is defined by $T^{-1}(x, y, z)=(x, 2 y, 3 z) . T^{-1}$ takes H to the hyperplane $\left\{x+\frac{y}{2}+\frac{z}{3}=2\right\}$.
3. Let A be the $2^{n} \times n$ matrix whose rows are all the 2^{n} possible combinations of 1 and -1 . Let $\vec{b}=(1,1,1, \ldots, 1) \in \mathbb{R}^{2^{n}}$.
Show that $\{\vec{x} \mid A \vec{x} \leq \vec{b}\}$ is a polytope and find all its vertices.
Solution. Observe that if $\left(x_{1}, \ldots, x_{n}\right) \in P$, then necessarily $\left|x_{1}\right|+$ $\ldots+\left|x_{n}\right| \leq 1$. This is because we can choose the inequality defined by the row of A in which the +1 's and -1 's correspond to the signs of the coordinates x_{1}, \ldots, x_{n}. In particular, P is bouneded and therefore it is a polytope.

We notice also that if $\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1$. then $\left(x_{1}, \ldots, x_{n}\right)$ is in P. Therefore, P is precisely the set of all points $\left(x_{1}, \ldots, x_{n}\right)$ with $\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1$. Therefore, any point on the boundary of P and in particular the vertices of P must satisfy $\left|x_{1}\right|+\ldots+\left|x_{n}\right|=1$.
If $\left(x_{1}, \ldots, x_{n}\right)$ is a point with $\left|x_{1}\right|+\ldots+\left|x_{n}\right|=1$ and both $\left|x_{i}\right|$ and $\left|x_{j}\right|$ are greater than 0 , then we may increase the absolute value of x_{i} and at the same time decrease by the same amount the absolute value of x_{j} and remain in P. We can also do the opposite operation and remain in P. Hence, there is a vector v such that both $\vec{x}+\vec{v}$ and
$\vec{x}-\vec{v}$ are in P. This implies that \vec{x} cannot be a vertex. There cannot be a supporting hyperplane for P that meet P only at \vec{x}.

We conclude that the only possible candidates for vertices are the $2 n$ points $\left(x_{1}, \ldots, x_{n}\right)$ with all the coordinates being equal to 0 except one coordinate that is equal either to 1 or -1 . Because of symmetry, they are all vertices.
4. Suppose P is a polytope in \mathbb{R}^{n}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be any linear map. Show that $T(P)$ is a polytope in \mathbb{R}^{k}.
Solution. What can be the image of a half-space $B=\{\langle\vec{a}, \vec{x}\rangle \leq b\}$ under a linear transformation T ? Let U denote the subspace $\{\langle\vec{a}, \vec{x}\rangle=$ $0\}$. Then $B=\cup_{t \leq b /\|\vec{a}\|^{2}}(t \vec{a}+U)$. Therefore, $T(B)=\cup_{t \leq b /\|\vec{a}\|^{2}}(t T(\vec{a})+$ $T(U)$.
If $T(\vec{a}) \in T(U)$, then $T(U)$ is equal to the image of T. Otherwise $T(U)$ is a hyper-plane (of co-dimension 1) in the image of T and $T(B)$ is a half-space in the vector space that is the image if T. Denoting the image of T by W, we see that $T(P)$ is the intersection of half-spaces in W, or the entire space W. Because P is bounded and T is linear and consequently uniformly continuous, we conclude that $T(P)$ is bounded (because P is bounded). Therefore, $T(P)$ is a bounded intersection of half-spaces in W. We can present it also as an intersection of halfspaces in \mathbb{R}^{k} by adding half-spaces of \mathbb{R}^{k} whose intersection is equal to W. and extend each half-space of W to a half-space of \mathbb{R}^{k}.

