Integer Optimization Problem Set 2

To be discussed on March 6

- 1. Show that a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$, with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ is a convex set.
- 2. Prove Carathéodory's Theorem: Let $X \subseteq \mathbb{R}^n$, then for each $x \in \text{cone}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n such that $x \in \text{cone}(\widetilde{X})$. The vectors in \widetilde{X} are linearly independent.
- 3. Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_1, \ldots, a_n \in \mathbb{R}^n$ be the columns of A. Show that cone($\{a_1, \ldots, a_n\}$) is the polyhedron $P = \{y \in \mathbb{R}^n : A^{-1}y \ge 0\}$. Show that cone($\{a_1, \ldots, a_k\}$) for $k \le n$ is the set $P_k = \{y \in \mathbb{R}^n : a_i^{-1}x \ge 0, i = 1, \ldots, k, a_i^{-1}x = 0, i = k+1, \ldots, n\}$, where a_i^{-1} denotes the i-th row of A^{-1} .
- 4. Prove that for a finite set $X \subseteq \mathbb{R}^n$ the conic hull cone(X) is closed and convex. Find a countably infinite set $X \subset \mathbb{R}^2$ such that cone(X) is not closed.
- 5. A *vertex* of a polyhedron $P(A, b) \subseteq \mathbb{R}^n$ is an element $v \in P$ such that there do not exist $v_1, v_2 \in P$, $v_1 \neq v_2$ with $v = 1/2(v_1 + v_2)$. Show that a polyhedron P(A, b) has a vertex if and only if $\operatorname{rank}(A) = n$.
- 6. Let P = P(A, b) be a rational polyhedron (meaning that both A and b can be chosen to be rational). Show that for each $c \in \mathbb{R}^n$ one has

$$\max\{c^T x : x \in P \cap \mathbb{Z}^n\} = \max\{c^T x : x \in P_I\}.$$

7. Show that each vertex of the polytope that is described by the inequalities

$$0 \leqslant x_i \leqslant 1, \quad i = 1, ..., n$$

$$\sum_{i=1}^{n} x_i \leqslant \beta$$

with $\beta \in \mathbb{Z}$ is an integral point. Argue that the integer program

$$\max \sum_{i=1}^{n} c_i x_i$$

subject to

$$0 \leqslant x_i \leqslant 1, \quad i = 1, ..., n$$

$$\sum_{i=1}^{n} 2 \cdot x_i \leqslant n$$

$$x \in \mathbb{Z}^n$$

can be solved in polynomial time.