Integer Optimization Problem Set 2

To be discussed on March 6

1. Show that a polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leqslant b\right\}$, with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ is a convex set.
2. Prove Carathéodory's Theorem: Let $X \subseteq \mathbb{R}^{n}$, then for each $x \in \operatorname{cone}(X)$ there exists a set $\widetilde{X} \subseteq X$ of cardinality at most n such that $x \in \operatorname{cone}(\widetilde{X})$. The vectors in \widetilde{X} are linearly independent.
3. Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix and let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ be the columns of A. Show that cone $\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$ is the polyhedron $P=\left\{y \in \mathbb{R}^{n}: A^{-1} y \geqslant 0\right\}$. Show that cone $\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)$ for $k \leqslant n$ is the set $P_{k}=\left\{y \in \mathbb{R}^{n}: a_{i}^{-1} x \geqslant 0, i=1, \ldots, k, a_{i}^{-1} x=0, i=k+1, \ldots, n\right\}$, where a_{i}^{-1} denotes the i-th row of A^{-1}.
4. Prove that for a finite set $X \subseteq \mathbb{R}^{n}$ the conic hull cone (X) is closed and convex. Find a countably infinite set $X \subset \mathbb{R}^{2}$ such that cone (X) is not closed.
5. A vertex of a polyhedron $P(A, b) \subseteq \mathbb{R}^{n}$ is an element $v \in P$ such that there do not exist $v_{1}, v_{2} \in P$, $v_{1} \neq v_{2}$ with $v=1 / 2\left(v_{1}+v_{2}\right)$. Show that a polyhedron $P(A, b)$ has a vertex if and only if $\operatorname{rank}(A)=$ n.
6. Let $P=P(A, b)$ be a rational polyhedron (meaning that both A and b can be chosen to be rational). Show that for each $c \in \mathbb{R}^{n}$ one has

$$
\max \left\{c^{T} x: x \in P \cap \mathbb{Z}^{n}\right\}=\max \left\{c^{T} x: x \in P_{I}\right\} .
$$

7. Show that each vertex of the polytope that is described by the inequalities

$$
\begin{aligned}
& 0 \leqslant x_{i} \leqslant 1, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} x_{i} \leqslant \beta
\end{aligned}
$$

with $\beta \in \mathbb{Z}$ is an integral point. Argue that the integer program

$$
\max \sum_{i=1}^{n} c_{i} x_{i}
$$

subject to

$$
\begin{aligned}
0 \leqslant x_{i} & \leqslant 1, \quad i=1, \ldots, n \\
\sum_{i=1}^{n} 2 \cdot x_{i} & \leqslant n \\
x & \in \mathbb{Z}^{n}
\end{aligned}
$$

can be solved in polynomial time.

